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SUMMARY

Chromosome-Conformation-Capture-Carbon-Copy
(5C) isamolecular technologybasedonproximity liga-
tion that enables high-resolution and high-coverage
inquiry of long-range looping interactions. Computa-
tional pipelines for analyzing 5C data involve a series
of interdependent normalization procedures and sta-
tistical methods that markedly influence downstream
biological results. A detailed analysis of the trade-
offs inherent to all stages of 5C data analysis has
not been reported. Here, we provide a comparative
assessment of method performance at each step in
the 5C analysis pipeline, including sequencing depth
and library complexity correction, bias mitigation,
spatial noise reduction, distance-dependent ex-
pected and variance estimation, statistical modeling,
and loop detection. We discuss methodological ad-
vantages anddisadvantages at each step andprovide
a full suiteofalgorithms, lib5C, toallow investigators to
test the range of approaches on their own 5C data.
Principles learned from our comparative analyses
can be applied to protein-independent proximity liga-
tion-based data, including Hi-C, 4C, and Capture-C.

INTRODUCTION

Higher-order chromatin folding in the three-dimensional nucleus

is critically linked to genome function, including transcription

(Deng and Blobel, 2014), replication (Rhind and Gilbert, 2013),

recombination (Jhunjhunwala et al., 2009), and X chromosome

inactivation (Nora et al., 2012). Molecular methodologies based

on proximity ligation and deep sequencing have revealed that

genomes are arranged into a hierarchy of complex configura-

tions (Dixon et al., 2012; Lieberman-Aiden et al., 2009). One

unique folding feature is the spatial juxtaposition of linearly

distant genomic loci into long-range contacts termed looping

interactions. More than 10,000 looping interactions have been

identified genome-wide in ultra-high-resolution genome archi-

tecture maps in human cell lines (Rao et al., 2014). Efforts are

currently underway to identify loops across a range of species,

cell types, and genetic perturbations (Dekker et al., 2017). As

genome-wide loop-resolution maps become widely available

across a range of biological conditions, the field will transition

to perturbation studies required to dissect the organizing princi-

ples and mechanistic roles of specific classes of long-range

interactions.

Chromosome-conformation-capture-carbon-copy (5C) is a

leading technique for mapping genome folding (Dostie et al.,

2006). 5C adds a PCR-based hybrid capture step to the classic

proximity ligation procedure, chromosome-conformation-cap-

ture (3C), to amplify only ligation junctions across contiguous re-

gions spanning a subset of the genome. The promise of 5C is

that genome contacts across several Mb-sized genomic regions

may be identified at restriction fragment-level resolution without

the high cost of genome-wide Hi-C if the various technical

biases, spatial noise, and statistical variance are modeled

appropriately. Specifically, 5C requires only 10–30 million reads

for fragment-level (250–4,000 kb) resolution chromatin contact

maps, whereas Hi-C requires 1–6 billion reads to obtain

genome-wide maps at a similar resolution in mammalian sys-

tems (Rao et al., 2014). 5C-based technologies continue to

evolve and mature, with cutting-edge approaches based on

double-alternating primer designs enabling dramatically

improved resolution and data quality (Hnisz et al., 2016; Kim

et al., 2018). Thus, 5C has a key strength in allowing researchers

to create high-resolution chromatin folding maps at specific

genomic region(s) across hundreds of biological conditions

and perturbations at a fraction of the cost of Hi-C.

The extent to which looping interactions differ among cell

types is currently unknown, in part because the methodologies

for identifying loops in proximity ligation-based sequencing

data vary widely across studies and can dramatically influence

the results. A systematic comparison of methods for processing,

normalizing, and modeling 5C data with the goal of detecting

loops has not been conducted. Moreover, no gold-standard

set of algorithms for loop detection in 5C data has been reported.

Here, we provide a suite of algorithms, lib5C, for direct system-

atic comparison of multiple methods at each stage in the 5C

analysis pipeline, including (1) sequencing depth and library

complexity correction, (2) bias mitigation, (3) contact matrix

binning, (4) distance-dependent expected signal and variance

estimation, and (5) statistical modeling for the goal of loop detec-

tion (Figure S1). We compare and contrast the strengths and

weaknesses of each method and make recommendations for

approaches that yield high-confidence looping interactions.

Together, our described approaches and freely available lib5C
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Figure 1. Schematic of 5C Analysis Pipeline

Flowchart illustrating key steps in 5C analysis.

(A) Interaction frequency heatmap of the Sox2 region in primary neural progenitor cells (pNPCs) after sequencing depth correction.

(legend continued on next page)
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tools (https://bitbucket.org/creminslab/lib5c/) allow for the sen-

sitive and specific detection of looping interactions from 5Cdata.

RESULTS

Protein-independent proximity ligation-based techniques (e.g.,

Hi-C, 5C, 4C, Capture-C) assay many types of non-biological

signal alongwith bona fide looping interactions (Yaffe and Tanay,

2011). Biases vary in their type and severity depending on the

method and require modeling and correction prior to biological

interpretation. To quantitatively assess biases and compare

and contrast the various analysis techniques available, we rean-

alyzed published 5C data comparing the chromatin interaction

patterns of murine v6.5 embryonic stem (ES) cells to those of pri-

mary neural progenitor cells (pNPCs) isolated from whole brains

of P1 129SvJae x C57/BL6, Sox2-eGFP mice (Beagan et al.,

2016). Each condition in this dataset includes two biological rep-

licates created from independent cultures of the source cells.

These published 5C data relied on the use of a single alternating

primer design (Phillips-Cremins et al., 2013); therefore, they con-

tained significantly more spatial noise and bias than the more

recent 5C libraries generated from double alternating designs

(Hnisz et al., 2016; Kim et al., 2018). We strategically focused

on the analysis of older, single alternating 5C to ensure that

our algorithms were robust to low-quality data. All principles

reported in this manuscript were robust across low-quality sin-

gle-alternating and high-quality double-alternating 5C primer

designs.

In the specific case of 5C, possible artifacts or confounding

signal include (1) sequencing depth and library complexity dif-

ferences due to technical artifacts and/or batch effects (Figures

1A–1C), (2) biases caused by the intrinsic properties of the re-

striction fragments queried by the assay (including their length

and guanine-cytosine [GC] content) (Figures 1D–1F), (3) spatial

noise due to 5C primer design and library complexity (Figures

1G and 1H), and (4) the expected background signal at each

length scale, which varies as a function of spatial genomic dis-

tance and region-specific topologically associating domain

(TAD) and subTAD structure (Figures 1I–1K). Upon correction

of these features, it is also critical to understand the dis-

tance-variance relationship (DVR) and parameterize an appro-

priate statistical model to assign p values to each possible

interaction (Figures 1L–1N). Finally, we call loops as clusters

of highly significant pixels and explore the downstream enrich-

ment of traditional, one-dimensional epigenetic marks (Figures

1O–1Q). By rigorously modeling the data, investigators can

distinguish loops from other genome folding patterns as well

as background signal and technical noise, thus providing the

opportunity for the discovery of biological mechanisms govern-

ing long-range interactions.

Similar to all genomics assays (Daley and Smith, 2013; Mar-

inov et al., 2014; Sims et al., 2014), 5C libraries can exhibit large

differences in complexity and sequencing depth due to tech-

nical variation in ligation and fixation efficiency among experi-

menters, reagents, and protocols. We observed that technical

5C replicates from the same biological condition can show a

high degree of variability in their raw counts distribution (Raw;

Figure 2A), distance-dependent expected counts distribution

(Raw; Figure 2B), spatial complexity (Raw; Figure 2C), and rela-

tionship between the raw interaction counts and GC content of

the fragments hybridizing to 5C primers (Raw; Figure 2D). Dif-

ferences in count distributions, distance-dependent expected

curves, and spatial noise trend more with technical batch

compared with biological conditions (Raw; Figures 2A–2C),

suggesting that they are driven by library complexity and

sequencing depth rather than biologically driven effects. Thus,

raw 5C counts exhibit biases that require correction prior to bio-

logical interpretation.

To compare looping interactions between biological condi-

tions, it is essential to correct for differences in library complexity

and sequencing depth. We find that correcting raw counts by a

scalar value of total sequencing reads is insufficient to correct

for replicate-to-replicate differences in the shape of the raw

counts distribution and distance-dependent expected curve

(Scaled; Figures 2A–2C). By contrast, correction via the me-

dian-of-ratios scaling technique (Anders and Huber, 2010) or

quantile normalization can more rigorously normalize the raw

counts distributions and distance-dependent expected curves

(median-of-ratios and qnorm; Figures 2A–2C). We find that

equalizing distributions among replicates of the same condition

does not sufficiently equalize GC content bias profiles. Indeed,

the relationship between raw interaction signal and the GC con-

tent of the ligation junctions remains widely variable between

replicates even after quantile normalization or median-of-ratios

(B and C) 5C count distributions (B) before and (C) after sequencing depth correction.

(D) Interaction frequency heatmap of the Sox2 region in pNPCs after bias factor mitigation.

(E and F) GC content bias profile (E) before and (F) after bias mitigation.

(G) Interaction frequency heatmap of the Sox2 region in pNPCs after binning and smoothing.

(H) Spatial variance of the binned contact matrix as a function of the width of the bin window size used during binning.

(I) Heatmap of the Sox2 region in pNPCs showing enrichment (red) and depletion (blue) of contacts relative to the donut expected model.

(J) Illustration of a one-dimensional distance dependence model, which describes the average interaction frequency as a function of linear genomic separation.

(K) Donut expected model interaction frequency heatmap for the Sox2 region in pNPCs after distance-dependence modeling and donut correction.

(L) Heatmap of the Sox2 region in pNPCs showing interaction p values on a scale of �10 3 log2(right-tail p value).

(M) Relationship between genomic interaction distance and variance of contact frequency across replicates.

(N) Lognormal distribution parameterized using the distance-variance relationship (blue), overlaid with observed data near an expected value of 50 (red).

(O) Heatmap of the Sox2 region showing classified interactions.

(P) Venn diagram showing the numbers of ES-specific, pNPC-specific, and constitutive interactions.

(Q) Enrichment heatmap showing relationships between various classes of significant interactions (rows) and various genomic annotations (columns). Certain

classes of interactions may be found to be enriched for certain genomic annotations (red squares on the heatmap) while other combinations may not be enriched

(blue and white squares), suggesting possible biological mechanisms or effects of chromatin looping interactions.

See also Figure S1.
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correction (Figure 2D). These data indicate that most published

methods for correcting sequencing depth and library complexity

differences in proximity ligation data are insufficient to account

for intra-condition technical variation among 5C replicates.

To account for the strong replicate-specific effect of GC

content bias on raw interaction count, we developed and applied

a variation of the conditional quantile normalization method

proposed by Hansen and colleagues for RNA sequencing

(RNA-seq) (Hansen et al., 2012). Specifically, we stratified all

pairs of restriction fragments by the GC content of the portion

of the DNA sequence homologous to the 5C primers. We condi-

tionally quantile normalized ligation junctions in each GC content

stratum across all 5C replicates from all biological conditions.

Our conditional quantile normalization procedure fully corrected

5C libraries for replicate-specific distributional differences

(conditional qnorm; Figures 2A–2C) and GC content bias profiles

(conditional qnorm; Figure 2D) without any distortion to the

underlying heatmaps (conditional qnorm; Figure 2C). Altogether,

our new conditional quantile normalization method offers robust

correction for sequencing depth and library complexity differ-

ences between technical replicates without negatively affecting

the underlying condition-specific genome folding patterns.

Although GC content profiles have been equalized between

samples after conditional quantile normalization (Figure 2D),

each individual sample still exhibits strong fragment-dependent

GC content biases that must then be corrected prior to the

detection of looping interactions (Figure 3). Hi-C ligation junc-

tions are also known to exhibit read count biases linked to

the intrinsic properties of the fragments (e.g., GC content, frag-

ment length, and mappability) (Jin et al., 2013; Yaffe and Tanay,

2011). The effects of intrinsic biases are not localized to partic-

ular pairs of interacting fragments, such as those engaged in

looping interactions, but instead increase or decrease the raw

interaction counts for all ligation partners of the fragment in

question. Thus, intrinsic biases are made manifest as ‘‘lines’’

of under- or over-enriched counts spanning a significant pro-

portion of the raw fragment-fragment contact matrices. Visual

inspection confirmed that bias ‘‘lines’’ also exist in 5C data

(Raw; Figure 3A, blue arrows). We observed this phenomenon

more quantitatively as a wide dynamic range (over 80-fold

difference in medians) of interaction count profiles among

the restriction fragments (Raw; Figure S2A). We also quantified

the presence of lines in the heatmaps by computing the sample

variance of the row sums of the contact matrix (Raw; Figures

S2C and S2D). An important consequence of fragment bias is

that it can obscure biological signal due to looping events, as

evidenced by zoom-in heatmaps of two previously reported

looping interactions (Beagan et al., 2016) (Raw, Figure 3B).

Together, these data highlight that intrinsic fragment biases

should be corrected before calling significant biological interac-

tions in 5C data.

Many approaches to correcting intrinsic fragment artifacts in

Hi-C data have been reported, but the performance of the

correction methods (i.e., explicit bias factor modeling, Knight-

Ruiz or ICED matrix balancing, and Express matrix balancing)

on 5C data has not been systematically assessed. Moreover,

bias correction is complicated by the fact that the ‘‘lines’’

observed on the heatmaps can be caused by loop extrusion

via cohesin (Fudenberg et al., 2016; Sanborn et al., 2015), which

is difficult to disentangle from the technical bias. We first

explored our 5C data for biases due to primer GC content and

fragment length previously reported in Hi-C experiments (Jin

et al., 2013; Yaffe and Tanay, 2011). Consistent with previous re-

ports, we observed a strong under-representation of detected

ligation junctions between fragments with extreme GC content

(Raw; Figure 3C). We also observed a trend toward more

frequent detection of ligation junctions between larger fragments

(Raw; Figure S2B). Finally, we stratified fragments according to

the normalized ChIP-seq signal in a 4 kb interval centered on

the fragment midpoint and found that ligation junctions tend to

exhibit stronger interaction frequency when the architectural

protein CTCF exhibits high occupancy in both fragments (Raw;

Figure 3D). These results are consistent with previous findings

that CTCF anchors the base of looping interactions genome-

wide (Beagan et al., 2017; Li et al., 2010; Rao et al., 2014; Sanyal

et al., 2012; Tang et al., 2015). Thus, both candidate bias factors

and epigenetic marks are covariates that may contribute to the

5C interaction counts.

We next surveyed a variety of methods for attenuating GC

content and fragment length biases while keeping the known

biological link between CTCF and interaction strength intact.

We first explicitly modeled and corrected the conditional quantile

normalized counts for GC content and restriction fragment

length biases (detailed in STAR Methods). This approach is

conceptually similar to seminal approaches in which biases

were explicitly modeled and corrected in Hi-C data (Jin et al.,

2013; Yaffe and Tanay, 2011). Although GC content and restric-

tion fragment length bias effects were almost completely atten-

uated after explicit modeling and correction (Explicit; Figures 3B

and S2B), the ‘‘lines’’ in the heatmaps remained, and individual

fragments still showed a wide dynamic range of counts (Explicit;

Figures 3A and S2A). The core assumptions behind explicit

modeling approaches are that (1) all the intrinsic factors contrib-

uting to technical bias are known and (2) their influence on

detected ligation junction counts can be modeled reasonably

well with tractable functions. Thus, the explicit GC-content and

restriction fragment length modeling results to date suggest

that there are still unknown 5Cbias factors or that currentmodels

Figure 2. 5C Sequencing Depth Correction Methods

(A) Count distributions across replicates from various cell types before and after the application of sequencing depth correction procedures. Replicates from

pNPCs are shown in red while replicates from ES cells are shown in various shades of blue, according to relative sequencing depth (low, medium, or high).

(B) Similar comparison for distance-dependence curves.

(C) Fragment-level contact frequency heatmaps of the region around the Sox2 gene. The noisy nature of the fragment-level 5C data prior to binning is due to the

single alternating 5C primer design that does not query every fragment.

(D) Heatmaps showing GC content bias profiles of selected replicates from the same cell type. The color indicates the average relative enrichment of ligation

detection events as a function of the GC content of the primer designed to one of the participating fragments (x axis) and that of the other fragment (y axis).

Differences in bias profiles between two replicates of the same biological condition suggest the presence of uncorrected technical biases.
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Figure 3. 5C Bias Factor Mitigation Procedures

(A) Fragment-level contact frequency heatmaps of the region around the Sox2 gene in pNPCs. Blue arrows highlight under-represented primers in raw data.

(B) Zoom-in views around previously identified pNPC-specific interactions between the Sox2 gene and NPC-specific enhancers. The upper row shows the

interaction profile in pNPCs, while the lower row shows the same window in ES cells.

(C) Heatmaps showing GC content bias profiles before and after bias factor mitigation. The color indicates the average relative enrichment of ligation detection

events as a function of the GC content of the primer designed to one of the participating fragments (x axis) and that of the other fragment (y axis).

(legend continued on next page)
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make inaccurate assumptions regarding the mathematical rela-

tionships among known bias factors.

We next compared explicit modeling to matrix balancing

algorithms that implicitly correct for biases without defining their

specific sources (Imakaev et al., 2012; Knight and Ruiz, 2013;

Rao et al., 2014; Sauria et al., 2015). Matrix balancing algorithms

have been effectively applied to Hi-C data (Crane et al., 2015;

Imakaev et al., 2012; Rao et al., 2014) and depend on the as-

sumptions that (1) all fragments throughout the genome have

‘‘equal visibility’’ (i.e., equal propensity for detection via a prox-

imity ligation assay), and (2) the intrinsic fragment-specific

biases can be represented as a single scalar value for each frag-

ment that interacts multiplicatively with the intrinsic biases of its

ligation partners. An open unanswered question is whether these

assumptions apply to 5C data given that the genomic regions are

relatively small (1–10 Mb) and that the biases may follow non-

linear relationships. We first applied ICED matrix balancing to

the conditional quantile normalized 5C counts. We observed

that lines in the heatmaps are strongly attenuated while preser-

ving looping interactions (Balanced; Figures 3A, 3B, and S2A).

Notably, the smooth heatmaps were achieved despite minimal

effect on the residual fragment length bias and only partial reduc-

tion in GC content bias (Balanced; Figures 3C and S2B). We also

investigated the Express matrix balancing algorithm, which

additionally incorporates information from a distance-dependent

expected model in the computation of the bias factors (Sauria

et al., 2015). We found that Express provided the most complete

correction of GC content bias, fragment length bias, and lines in

heatmaps, but it is overly harsh in attenuating real biological

looping interactions (Express; Figures 3A–3C, S2A, and S2B).

Consistent with these results, Express resulted in marked atten-

uation of the known enrichment of CTCF at the base of the stron-

gest interacting fragment-fragment ligation junctions (Figure 3D).

These observations support the hypothesis that at least some of

the signal contributing to ‘‘lines’’ observed in the raw heatmaps

may be biologically meaningful rather than simple technical

bias. Together, these data indicate that currently available

methods fall short of the goal of minimizing fragment biases

while preserving bona fide looping interactions.

We created a variant of matrix balancing called Joint Express

to account for Express’ over-smoothing while retaining its ability

to attenuate bias factors. The canonical Express algorithm com-

putes a unique bias vector for each replicate. Our new Joint

Express variant computes a single bias vector by integrating in-

formation from all replicates (see STAR Methods). Joint Express

relies on the assumptions that (1) variation in technical bias is

negligible among the conditional quantile normalized replicates,

and (2) any observed bias vector differences correspond to bio-

logically meaningful differences in cell-type-specific interaction

frequency (i.e., extrusion lines, loops). We see that Joint Express

preserves known biological looping interactions and smooths

lines in heatmaps to a degree similar to ICED (Joint Express; Fig-

ures 3A, 3B, and S2A) while providing slight improvements in the

smoothing of GC content and fragment length biases (Joint Ex-

press; Figures 3C and S2B). We also observe that Joint Express

improves CTCF enrichment at high interaction frequency ligation

junctions compared to Express (Figure 3D). Finally, counts

processed using the Joint Express algorithm retained a greater

degree of cell-type-specific signal, as evidenced by weaker

inter-cell type correlations than those processed by canonical

Express or ICED (Figure 3E). Altogether, these data indicate

that traditional matrix balancing by ICED and our new variant

on the Express algorithm, Joint Express, represent the highest-

performing methods for removing technical fragment-specific

biases from 5C data while preserving biologically important

interactions.

Hi-C data are typically binned using non-overlapping windows

of a pre-determined width and summing the detected ligation

events within each window. The counts in a specific pixel from

a binned 5C matrix can be interpreted as the relative interaction

frequency between the genomic segments represented by the

two anchoring bins across a population of cells. The 5C data re-

analyzed here are particularly susceptible to spatial noise

because of the use of a single alternating primer design that

queries only a subset of all possible ligation junctions. Thus,

instead of using non-overlapping bins tiling the genomic region

of interest, we employ a sliding window strategy where the bin

step size between successive evaluations of the window’s inter-

action frequency is smaller than the bin window size. Region-

wide heatmaps binned with a bin window size of 4 kb and bin

step size of 4 kb (corresponding to no overlap between adjacent

windows) exhibit a high degree of spatial noise, including many

segments where no data are available (Figure 4A). By visually in-

specting zoomed-in heatmaps, we found discontinuous and

noisy interaction signal at a known loop connecting the Sox2

gene with a putative NPC-specific enhancer marked by NPC-

specific H3K27ac (Figure 4B). We increased the bin window

size to 16 kb while keeping the same 4 kb bin step size and

observed markedly reduced spatial noise and clear emergence

of punctate loops. Noteworthy, large (100 kb+) bin window sizes

markedly attenuate spatial noise and highlight TAD/subTAD

structure but at the expense of severe over-smoothing (and in

many cases complete loss) of looping interactions (Figure S3B).

Consistent with these findings, increasing the bin window size

results in a decreased number of bin-bin pairs with strong inter-

actions (Figure 4C) and an inverse relationship with the spatial

variance, or noise, observed in the binned contact matrix (Fig-

ure 4D; STAR Methods). Together, these data suggest that by

adjusting the bin window size, investigators can strike a balance

between spatial noise in the 5C contact matrices and the ability

to detect fine-grained architectural features at high resolution.

The binned interaction counts (now corrected for sequencing

depth, library complexity, intrinsic fragment-specific biases,

and spatial noise) exhibit a genomic distance-dependent

(D) Similar to (C), but stratifying fragment-fragment ligation junctions according to CTCF ChIP-seq signal over the fragment (computed as the average number of

reads per million mapping to a 4 kb window centered at the fragment midpoint). In this case, enrichment for contacts between CTCF-rich fragments (more orange

or red in the upper right of the bias heatmap) is expected, consistent with CTCF’s role as an architectural protein.

(E) Tables showing pairwise Spearman’s correlation coefficients between replicates after ICED matrix balancing (left), after Express normalization (center), and

after Joint Express normalization (right).

See also Figure S2.
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interaction signal (Lieberman-Aiden et al., 2009) that must be

modeled before detecting loops (Rao et al., 2014). This so-called

distance-dependent background is made manifest as a strong

band of high interaction counts along the diagonal of genome

folding heatmaps (Figure 5A). We first modeled the changes in

expected interaction frequency between two loci as a function

of the linear genomic distance (Figure 5B; STAR Methods).

We compared the average number of empirically observed

counts at each distance scale to a locally weighted scatterplot

smoothing (LOWESS) distance dependence model and found

them to be similar, with the regional empirical model becoming

noisy at longer interaction distances where there are fewer

Figure 4. Effects of Binning and Smoothing on 5C Contact Matrices

(A) Contact frequency heatmaps of the Sox2 region in pNPCs, binned at 4 kb bin step size with a variety of bin window sizes (from left to right: 4 kb, 16 kb, 100 kb).

(B) Zoom-in view around previously identified interaction between the Sox2 gene and an NPC-specific enhancer. ChIP-seq tracks show H3K27ac signal in ES

cells and NPCs.

(C) Distributions of the log-fold enrichment of smoothed values over an empirical one-dimensional distance-dependent expected value across the Sox2 region.

The curly braces indicate the number of bin-bin pairs with smoothed values greater than four times the expected value for their interaction distance. Absence of

points showing pixel-wise contact enrichment suggests that fine scale features such as looping interactions may have been smoothed away during binning.

(D) Spatial variance of the contact matrix plotted as a function of bin window size.

See also Figure S3.
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bin-bin pairs (Figure S4A; STAR Methods). A critical decision in

modeling the distance-dependent expected interaction fre-

quency is whether a single, global fit to all the data or a 5C re-

gion-specific fit should be applied. We empirically observed

that different 5C regions exhibit dramatically different distance-

dependent counts relationships (Figure S4B). For example, at

Figure 5. Strategies for Modeling the Expected 5C Counts at Each Genomic Distance Scale

(A) Heatmap visualization of the smoothed contact matrix for the Sox2 region in pNPC Rep 2.

(B) Illustration of expected modeling procedure. The density of entries in the smoothed contact matrix (pixels in the contact frequency heatmap in A) is shown in

blue hexagonal bins. Distance-dependent expected models attempt to fit a function (red curve) through the data (blue points).

(C) Smoothed contact matrix entries from the Nanog region in pNPC Rep 2 (blue points) compared to two different log-counts lowess distance-dependent

expected models: one fitted only to the data from the Nanog region (red curve), and one fitted to data from all 5C regions in the dataset (green curve). The region-

specific model follows the observed data more closely.

(D) The rows compare a log-counts lowess one-dimensional distance-dependent expected model (top row) to a donut expected model (bottom row). The left

column shows a contact frequency heatmap visualization of the two models at the Sox2 region. The center column shows log-fold enrichments of the smoothed

contactmatrix entries over the expectedmodels. The right column shows a zoom-in view around a previously identified interaction between the Sox2 gene and an

NPC-specific enhancer. ChIP-seq tracks show H3K27ac signal in ES cells and NPCs. Use of the donut expected model recovers a more punctate looping

interaction in the corner of this contact domain.

See also Figure S4.
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the Nanog locus, the global expected model (estimated using a

log-counts lowess fit, detailed in STAR Methods) overestimates

the average counts at every distance scale (Figure 5C). Thus, the

regional outperforms the global distance-dependence expected

model for correcting the 5C diagonal prior to loop calling.

In addition to the distance-dependence relationship, the local

TAD/subTAD architecture strongly influences contact fre-

quencies observed in 5C datasets. Two loci in the same TAD/

subTAD tend to interact more frequently than a pair of loci that

span a domain boundary, even when these pairs of loci are sepa-

rated by the same linear genomic distance (Dixon et al., 2012). It

is essential to include TAD/subTAD structure in the expectation

when detecting loops. To model the expected counts due to

chromatin domains, we applied the donut expected filter pro-

posed by Aiden and colleagues (Rao et al., 2014). The donut filter

provides a model of the distance-dependent background and

local domain structure for each region without having to know

the location of TADs/subTADs a priori (Figure S4C; STAR

Methods). We observed punctate looping interactions upon

correction of the binned 5C counts for the donut expected,

whereas relying exclusively on a one-dimensional distance

model tends to lead to smearing of punctate looping pixels

across the corners of TADs/subTADs (Figure 5C). Overall, we

see that the donut provides a more rigorous and accurate ex-

pected model for calling looping interactions in 5C data than

the one-dimensional distance dependence relationship.

We next investigated methods for estimating the variance un-

der the null model that any given pixel is not engaged in a bona

fide looping interaction. More specifically, our null hypothesis is

that the observed interaction frequency at a given pixel is not

significantly higher than the expected value at that pixel. To

parameterize a distribution of possible counts values under the

null distribution for each pixel, it is necessary to understand

the relationship between the mean and the variance. In a recent

kilobase-resolution Hi-C dataset (Rao et al., 2014), loops were

called by applying a Poisson distribution to the raw interaction

counts for each bin-bin pair. The Poisson distribution was not

applicable to our 5C data because we converted raw counts

from a discrete to a continuous random variable due to the

normalization steps and use of geometric mean binning. There-

fore, we sought alternative approaches for variance estimation.

We first computed the sample variance across two biological

replicates at each pixel under a lognormal model to obtain an

independent variance estimate for each pixel (STAR Methods).

Individual variance estimates based only on two replicates ex-

hibited a high degree of noise. However, we observed a strong

relationship between genomic interaction distance (or equiva-

lently, expected value, which trends strongly with distance)

and variance (left panel; Figures 6A and 6B). We therefore fitted

a curve to the trend between variance and genomic distance us-

ing LOWESS to obtain a DVR. We then used the estimated

variance values from the inter-replicate DVR to parameterize

the lognormal distribution across the full range of possible ex-

pected values. When we compared the parameterized distribu-

tions to the empirical distributions of observed values with

similar expected values, we found that our inter-replicate DVR

was consistently underestimating the variance (left panels; Fig-

ure 6C). Therefore, we reasoned that there must be an additional

contributor to the variance in our 5C data beyond the inter-repli-

cate variance.

We next computed an intra-replicate variance using deviations

between the observed and expected values within each repli-

cate (detailed in STAR Methods). The resulting variance esti-

mates also trended strongly with genomic distance (middle

panels; Figures 6A and 6B), suggesting that the DVR is a general

property of 5C data and is not specific to particular methods of

variance estimation. Lognormal distributions parameterized us-

ing this deviation-based DVR provided better fits to the empirical

distribution of observed values (middle panels; Figure 6C). We

also fit a constant variance model to the intra-replicate variation

data (right panels, Figures 6A and 6B). The constant, distance-

invariant intra-replicate estimates systematically underestimates

the variance at short distances (high expected values) and over-

estimates it at long distances (low expected values) (right panels;

Figure 6C). Thus, among the options we pursued in this manu-

script, an intra-replicate DVR provided the closest resemblance

to the underlying data.

To better understand our three variance estimates, we quanti-

fied the significance of each bin-bin pair by computing right-tail

p values for each observed value using a lognormal distribution

parameterized using the expected value from the donut ex-

pected model and the variance value from the DVR (detailed in

STAR Methods). We visualized the genomic length scale for

the top 500 most significant bin-bin pairs (Figure 6D). The

constant intra-replicate variance estimate resulted in loops

biased to interaction distances of 0–160 kb (with over 80% lying

within 80 kb), consistent with the observation that this approach

underestimates 5C signal variation at short interaction distances

(right panel, Figure 6D). The inter-replicate DVR resulted in loops

biased to short length scales (left panel, Figure 6D). By contrast,

the intra-replicate deviation DVR resulted in a uniform distribu-

tion of interaction distances, suggesting it performs well at mini-

mizing bias toward loops at specific length scales (middle panel;

Figure 6D). Overall, these results reveal the presence of a strong

relationship between genomic interaction distance and variance

in 5C data, which can be modeled to identify interactions across

all distance scales in an unbiased manner.

To assess the potential biological relevance of the detected

loops, we clustered pixels into significant looping interactions

and classified them by their cell-type-specific or -invariant

Figure 6. Strategies for Modeling the Distance-Variance Relationship in 5C Data

(A) The blue hexagonal bins show the joint distribution of genomic interaction distance and variance for every bin-bin pair. In the left column (‘‘Inter-replicate

Variance’’), the variance is estimated using the variance across two biological replicates. In the middle and right columns (‘‘Deviation Variance’’ and ‘‘Constant

Variance’’), the variance is estimated based on deviations between the observed and expected values. The red curves show variance trends fitted to the data.

(B) Same data as in (A), but focusing on shorter interaction distances, where variance changes most rapidly.

(C) Lognormal distributions (blue) parameterized using the variance estimates from the fitted curves above, overlaid with the empirical distribution of observed

values near similar expected values (red). The three rows highlight different expected values and therefore different distance scales.

(D) Histograms showing the distribution of genomic interaction distances for the top 500 most significant bin-bin pairs according to each variance model.
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Figure 7. Characterization of Statistically Significant Interactions for Enrichment of Known Epigenetic Marks

(A) Zoom-in view around a previously identified interaction between the Sox2 gene and an NPC-specific enhancer. ChIP-seq tracks show H3K27ac signal in ES

cells and NPCs.

(B) Same view as in (A) but colored according to cell-type specificity of significant interactions.

(C) Venn diagram illustrating total numbers of interactions called in each cell type.

(D) Whole-region view of classified interactions throughout the Sox2 region.

(legend continued on next page)
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properties. We performed this analysis using the pipeline of (1)

conditional quantile normalized raw counts, (2) joint express ma-

trix balancing, (3) binning and smoothing with a 4 kb bin step size

and 16 kb bin window size, (4) modeling the expected value us-

ing the donut expected, and (5) modeling variance using the

intra-replicate deviation-based DVR. Starting from matrices of

p values for each replicate, we performed Benjamini-Hochberg

false discovery rate (FDR) control at 10% FDR. Because multiple

adjacent significant pixels often represent one underlying biolog-

ical interaction, the remaining pixels that passed multiple testing

correction were clustered into groups of adjacent pixels. Clus-

ters with less than three significant pixels and clusters only pre-

sent in one of the two biological replicates were removed from

analysis (STARMethods). As a representative example, we visu-

alized the observed heatmaps for both ES and pNPC cell types in

the vicinity of a previously identified NPC-specific interaction be-

tween the Sox2 gene and a downstream NPC-specific enhancer

(Figure 7A) and compared it to the clustered loop calls (Figure 7B;

additional loci highlighted in Figures S5A–S5D). All together, we

identified 141 ES-specific, 100 pNPC-specific, and 33 constitu-

tive interactions (Figure 7C) distributed across the 5C regions

(Figure 7D).

We also confirmed that our final loop calls exhibited the ex-

pected enrichment for cell-type-specific annotations on the

linear Epigenome. Consistent with previously published obser-

vations (Beagan et al., 2017; Beagan et al., 2016), ES-specific

loops were enriched for putative ES-specific enhancers,

constitutive and pNPC-specific loops were enriched for consti-

tutive CTCF, and pNPC-specific loops were enriched for

pNPC-specific YY1 and putative pNPC-specific enhancers

(Figure 7E). Finally, we evaluated the enrichment of motifs

occupied by CTCF in the pNPC condition with different orien-

tations under loops called as significant in the pNPC condition

(Figure 7F; ES-specific loops in Figure S5E). We observed a

strong enrichment for convergently oriented CTCF motifs

anchoring the base of looping interactions previously reported

(Rao et al., 2014). Thus, our selected analysis conditions at

each stage in the 5C pipeline resulted in loops anchored by

known epigenetic modifications and architectural protein-

binding sites.

Finally, we compared the loops called by different variations

of our 5C pipeline to Hi-C data. We observed that certain varia-

tions to the 5C pipeline had a significant impact on the results

(e.g., smoothing versus not smoothing; or donut versus the

one-dimensional distance-dependent expected) while others

seemed to have a less pronounced effect (e.g., reversing the

order of the binning and balancing steps; or applying different

balancing methods) (Figure S6). Overall, our chosen combi-

nation of 5C pipeline analysis conditions resulted in many loops

that are readily visible in Hi-C data and strongly enriched for pre-

viously reported cell-type-specific annotations on the linear

Epigenome.

DISCUSSION

Recovering bona fide, biologically relevant looping interactions

from 5C data is a challenging problem, requiring multiple steps

to account for sequencing depth and library complexity,

primer- and fragment-specific biases, spatial noise, distance-

dependent background signal, region- and domain-specific

contact frequency effects, and statistical variance estimation.

Each of these steps can be addressed with a wide variety of

proposed approaches, the appropriate selection of which can

often be critical to the success of the loop identification

endeavor. Here, we provide a systematic analysis of available

methods for analyzing loops in 5C data. We introduce several

novel approaches and algorithm variants specifically for 5C

data, including: (1) a variant of conditional quantile normaliza-

tion, (2) the Joint Express balancing algorithm, and (3) a new

approach for modeling the variance using a DVR. We system-

atically assess the performance of each analysis procedure at

each stage and create a pipeline that is capable of identifying

known reported looping interactions. The looping interactions

called with a pipeline of our selected high-performance anal-

ysis conditions exhibit strong enrichment of known epigenetic

modifications and architectural protein-binding sites at loop

anchors and are comparable in many cases to loops observed

in Hi-C data. Future application of algorithms discussed in this

manuscript to more recently published double alternating 5C

libraries will result in loop calls with high concordance with

Hi-C data on a targeted subset of genomic loci at a significantly

attenuated cost.

Decisions made in the 5C analysis process involve critical

trade-offs. Bin size can be decreased to improve matrix reso-

lution, but with insufficient read depth this can increase spatial

noise. Fragment-specific biases can be corrected via matrix

balancing, but when the assumption of equal visibility does

not apply, as is often the case in 5C, this can result in the

loss of biologically important structures such as loop extru-

sion lines. If not appropriately addressed, library complexity,

sequencing depth, and batch effect differences across libraries

can lead to false-positive classification of bias as a cell-type-

specific loop. Without careful modeling of the local domain

structure and distance-dependence interactions, a large num-

ber of pixels can be mistakenly classified as loops when they

are simply interactions due to TADs/subTADs. Thus, a thor-

ough analysis and characterization of computational methodol-

ogies at each stage in the process of 5C data processing

is essential for high-quality annotation of bona fide looping

interactions.

One area we leave open to further exploration is a compre-

hensive understanding of the differences between 5C and

Hi-C datasets. While we offer a brief comparison suggesting

that loops visible in ultra-resolution Hi-C datasets can be

accurately called from 5C data by our best computational

(E) Heatmap showing log-scale fold-enrichment (a log fold enrichment of zero, indicated by a white color, represents no enrichment above background) of

selected genomic annotations (rows) within interaction classes (columns) relative to background bin-bin pairs. The numbers on the heatmap grid represent

p values for the enrichment, computed using Fisher’s exact test on a two-by-two contingency table (STAR Methods).

(F) Enrichment above background of motif orientations of CTCF sites occupied in NPCs found at the base of significant interactions identified in pNPCs. The

most-enriched orientation of occupied CTCF sites is the convergent orientation, consistent with previous reports.

See also Figures S5 and S6.
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pipeline, this by no means suggests that the underlying data

generated from single alternating primer designs are equiva-

lent. Further improvements to the older 5C data analyzed

here have already been published, such as the use of in situ

ligation and a double alternating primer design, and represent

an important, ongoing area of investigation (Hnisz et al., 2016;

Kim et al., 2018).

Here, we have highlighted several important trade-offs and

lessons to be learned in 5C data analysis, including (1) the ben-

efits of using a local donut expected model to attenuate false-

positive loop calls due to local TAD/subTAD structure; (2) the

importance of normalizing raw data to correct for batch effects,

sequencing depth, and technical library complexity differences

before calling loops; (3) the elucidation and preliminary modeling

of a DVR in 5C data; and (4) the possibility that the assumption of

equal visibility does not apply to 5C data, suggesting that canon-

ical matrix balancing should be used with caution to avoid

normalizing bona fide looping interactions. We note that the esti-

mation of a precise and accurate DVR remains an important area

for future inquiry. Moreover, the task of classifying differential

looping interactions is only discussed briefly here and remains

an exciting area for future work. We provide the coding package

lib5C to allow investigators to assess the effects of the trade-offs

discussed here on their own novel 5C datasets. We expect that

the role for specific analysis steps and their parameters in loop

identification will remain an important topic of future inquiry given

the relative scarcity of universally accepted loop calls and loop

calling algorithms in 3C-based data.
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STAR+METHODS

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Jennifer E.

Phillips-Cremins (jcremins@seas.upenn.edu).

METHOD DETAILS

Notation
Wewill assumewe haveNK 5C libraries, indexedwith the set K={1,.,NK}. Each of the 5C libraries queriesNR regions, indexedwith the

set R={1,.,NR}. Any given region r˛R is queried by NP,r primers, indexed with the set Pr={1,.,NP,r}. Since the 5C assay queries liga-

tions between primers, the set of all primer-primer junctions in a given region r˛R is therefore Jr = ffa; bg : a˛Pr ; b˛Prg, where we

note that a junction is identified by an unordered set of the two primers involved in the junction. Not all primer-primer junctions are phys-

ically possible, because two primers with the same orientation cannot be ligated together (i.e., 3’ to 3’ ligations and 5’ to 5’ ligations are

impossible). Therefore, we construct a similar set to represent all primer-primer junctions actually queried by the assay in a given region

r˛R; this set isQr = ffa; bg : a˛Pr ; b˛Pr ; Or;asOr;bg, where a and b represent the indices of the two primers in a given junction and

Or,a denotes the orientation of primer a˛Pr in region r˛R. Wewill sometimes wish to consider the set of queried primer-primer junctions

in a given region r˛R which involve a specific primer p˛Pr. We denote this set Qr;p = ffp; bg : b˛Pr ; Or;psOr;bg.
In exploring intrinsic fragment properties, we construct subsets of the primers according to the GC content of their genome-bind-

ing subsequences (i.e., excluding universal tails). We can denote the set of primers in a given region r˛Rwhose GC content percent-

age is u as Pu
r = fp˛Pr : GCr; p = ugwhereGCr, p is the GC content percentage of primer p˛Pr in region r˛R. We can use these primer

subsets to identify primer-primer junctions whose involved primers have specific GC content levels. In particular, we can denote the

set of primer-primer junctions in a given region r˛R involving one primer with GC content percentage u and another primer with GC

content percentage v as Qu;v
r = ffa;bg : a˛Pu

r ; b˛Pv
r ; Or;asOr;bg.

When exploring the linear genomic distance separating fragments, we annotate the midpoint of fragment f that a primer p˛Pr in a

given region r˛R is designed to query byMf
p;r . We annotate the fragments start coordinate as Sf

p;r and its end coordinate as Ef
p;r . For

the purposes of visualizing fragment level contacts, we collect all the 5’ oriented primers in each region in to an ordered set

P5
0

r = fp˛Pr : Or;p = 5
0 g and all the 3’ oriented primers in another ordered set P3

0
r = fp˛Pr : Or;p = 3

0 g. We then constructed amatrix

with dimensions
���P5

0
r

���3���P3
0

r

��� whose i,j th entry represents the count of the ligation junction between the i th primer in P5
0

r and the j th

primer in P3
0

r . We were then able to visualize this matrix as a contact frequency heatmap.

Data Sources and Primer Quality Filtering
We obtained previously published source data fromGEOSeries GSE68582 (Beagan et al., 2016; Servant et al., 2015). For each of the

samples listed in the table below, we obtained the raw countsfile available as a Supplementary File on that sample. We also obtained

information about the 5C primers used for these samples from GSE68582_BED_ES-NPC-iPS-LOCI_mm9.bed.gz, a Supplementary

File on the GSE68582 series.

GEO Sample Replicate Name Used in this Work

GSM1974095 ES Batch M Rep 1

GSM1974096 ES Batch M Rep 2

GSM1974099 pNPC Rep 1

GSM1974100 pNPC Rep 2

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Bowtie Langmead et al., 2009 http://bowtie-bio.sourceforge.net/

index.shtml

MACS2 Zhang et al., 2008 https://github.com/taoliu/MACS

ICED Imakaev et al., 2012 https://github.com/hiclib/iced

lib5c This paper https://bitbucket.org/creminslab/lib5c

HiC-Pro Servant et al., 2015 https://github.com/nservant/HiC-Pro

Juicer Durand et al., 2016 https://github.com/theaidenlab/juicer
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Before beginning analysis, we removed any 5C primers which had fewer than 100 total cis read counts in any sample, along with

those for which less than half of the possible cis ligation products were ever detected in any single replicate.

Sequencing depth and library complexity correction strategies
Simple Scalar Normalization

The total number of cis contact detections within a given region r˛R in each library k˛K are computed as Equation 1:

sk;r =
X
q˛Qr

Cq;k;r (Equation 1)

where Cq,k,r is the number of reads counted mapping to primer-primer junction q˛Qr in region r˛R and library k˛K. For each region

r˛R, we then identify the smallest size factor across the libraries smin;r =min
k˛K

sk;r The scaled count, bCq;k;r , for primer-primer junction

q˛Qr in library k˛K and region r˛R is then computed as Equation 2:

bCq;k;r =Cq;k;r 3
smin;r

sk;r
cq˛Qr ; k˛K; r˛R: (Equation 2)

Median of Ratios Normalization

The median-of-ratios size correction factor (Anders and Huber, 2010) sk,r for a given region r˛R and library k˛K is computed as

Equation 3:

sk;r =median
q˛Qr

Cq;k;r�Q
k
0˛KCq;k

0
;r

�1=NK
ck˛K; r˛R: (Equation 3)

The scaled counts value for primer-primer junction q˛Qr in region r˛R and library k˛K is then computed as Equation 4:

bCq;k;r =
Cq;k;r

sk;r
cq˛Qr ; k˛K: (Equation 4)

Quantile Normalization
To perform quantile normalization, we created a table whose rows represent individual primer-primer ligations q˛Qr and whose

columns represent individual libraries k˛K. The count values Cq,k,r are entered into the table at the appropriate positions, and the

Cq,k,r are then sorted column-wise in each k column. Thus, the i th row of the table corresponds to the i th order count value,

{Cq,k,r:q˛Qr}(i), with the column index k specifying which library this order statistic is taken over. Next, we compute the row-wise

average across the columns (i.e. across libraries) of the sorted table (Equation 5).n bCq;k;r : q˛Qr

o
ðiÞ
=

1

NK

X
k
0˛K

n
Cq;k

0
;r : q˛Qr

o
ðiÞ

ci˛f1;.; jQr jg: (Equation 5)

Finally, we unscramble the table back to its original ordering, and read out the normalized count bCq;k;r from row q, column k. If there

is a tie in library k˛K between a set of tied ranks T={t1, t2,.,tn}, it is resolved by identifying the lowest of the tied ranks tmin =min
t˛T

t and

setting the normalized value for every rank in T in library k to the average across libraries at rank tmin, or in other words,

f bCq;k;r : q˛QrgðtÞ = 1
NK

P
k0˛K

fCq;k0 ;r : q˛QrgðtminÞ; ct˛T.

Conditional Quantile Normalization

Inspired by the previous application of conditional quantile normalization to RNA-seq data (Hansen et al., 2012), we devised a new

conditional quantile normalization scheme for proximity ligation data by performing quantile normalization separately on stratified

groups of fragment-fragment junctions with the same GC content properties. The normalized counts values bC for the group of

fragment-fragment junctions involving one primer with GC content percentage u and another primer with GC content percentage

v in a given region r˛R are computed as Equation 6:n bCq;k;r : q˛Qu;v
r

o
ðiÞ
=

1

NK

X
k
0˛K

n
Cq;k

0
;r : q˛Q

u;v
r

o
ðiÞ

ci˛f1;.; jQr jg; (Equation 6)

where fCq;k;r : q˛Qu;v
r gðiÞ is the i th smallest non-redundant counts value in region r˛R in library k˛K among primer-primer junctions

involving primers with GC content percentages u and v. A separate set Qu;v
r exists for each pair of GC content percentages (u,v) for

which at least one queried fragment-fragment junction q˛Qr consisted of one fragment with GC content percentage u and another

with GC content percentage v. If there is a tie in library k˛K between a set of tied ranks T={t1, t2, ., tn}, it is resolved by identifying

the lowest of the tied ranks tmin =min
t˛T

t and setting the normalized value for every rank in T in library k to the average across libraries at

rank tmin, or in other words, f bCq;k;r : q˛Qu;v
r gðtÞ = 1

NK

P
k0˛K

fCq;k0 ;r : q˛Q
u;v
r gðtminÞ; ct˛T.
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Bias Factor Mitigation Strategies
Explicit Normalization: Overview

Wealso developed amethod for specifying bias factors explicitly. Previous reports have established that data fromproximity ligation-

based assays is biased by the GC content and mappability of the sequence near the ligation point as well as the length of the restric-

tion fragments involved in the ligation (Yaffe and Tanay, 2011). In 5C data, mappability is not a prominent contributor to the bias

profile; the 5C primers are always sequenced in their entirety and their sequences are unique. Thus, GC content and fragment length

are the two major known bias factors that apply to 5C data.

We first constructed models of our bias factors, including (1) the estimated log-scale GC bias factor for a primer-primer ligation

given the GC content of the primers involved in the ligation and (2) the estimated length bias factor given the lengths of the fragments

involved in the ligation. We annotate the models (which model the degree to which interaction counts for a particular primer-primer

ligation junction are over-represented as a function of its properties, as explained in further detail below) as FGC(GCr,a, GCr,b) and

Flen(Lr,a,Lr,b), respectively, where GCr,a represents the GC content of primer a˛Pr in region r˛R and Lr,a represents the length of

the restriction fragment queried by primer a˛Pr in region r˛R. Since distance dependence is a strong covariate in 5C data, we

also use a model that accounts for the expected value of the primer-primer ligation counts given the genomic distance between

the two fragments involved in the ligation. We create one distance dependence model for each library k˛K and for each region

r˛R, calling it Dr;k

����Mf
a;r � Mf

b;r

����, where Mf
a;r represents the midpoint of the restriction fragment queried by primer a˛Pr and

Dr;k

����Mf
a;r �Mf

b;r

���� represents the expected value of the counts for a particular ligation junction given that the fragments involved

in the junction are separated by a midpoint-to-midpoint distance of
���Mf

a;r �Mf
b;r

��� base pairs along the linear genome.

GC content and fragment length biases have been discussed as non-independent bias factors by previous reports (Yaffe and

Tanay, 2011), though modeling them as fully independent can be challenging (Jin et al., 2013). Here we have chosen to

partially address this problem by keeping our bias factor models FGC(GCr,a, GCr,b) and Flen(Lr,a, Lr,b) nominally independent, but

fitting them using an iterative procedure. The intuition for our iterative fitting procedure is that at each iteration step, we choose

one bias model (GC or length) and fit it de novo (i.e., ignoring any parameters fitted for this model in earlier iterations) to

data that have been adjusted by the distance dependence model as well as the latest version of the other bias model (see model

Equations 10, 11, 12, 13, 14, 15, and 16 below). We then switch to the other bias model and repeat this process until the model

parameters converge (we chose to declare convergence when, for each model, the relative change in predicted bias from the pre-

vious version was within 1310�4). Specifically, if we choose the GCmodel for the first iteration, we re-fit a new GCmodel to the data

adjusted for distance dependence as well as the latest version of the length bias model, then we re-fit a new length model to the

data adjusted for distance dependence as well as the new GCmodel we just computed, then fit another GC model, and so on. After

we have finished fitting FGC(GCr,a,GCr,b) and Flen(Lr,a, Lr,b) via this process, the bias-corrected counts, Xq,k,r, for primer-primer ligation

q={a,b}˛Qr in library k˛K and region r˛R will be Equation 7:

Xq;k;r = exp
h
log
� bCq;k;r + 1

�
� FGCðGCr;a; GCr;bÞ � FlenðLr;a;Lr;bÞ

i
� 1; (Equation 7)

where the details of the GC content and fragment length models FGC(GCr,a, GCr,b) and Flen(Lr,a, Lr,b) will be explained in detail

Equations 10, 11, 12, 13, 14, 15, and 16 below.

Explicit Normalization: Fragment-Level Distance Dependence Model
To obtain a simple fragment-level distance dependence model, we performed a linear regression of the logged interaction distances

(in units of base pairs) against the logged counts values within a given library k˛K and region r˛R (Equation 8):

bmr;k ; bbr;k = argmin
mr;k ; br;k

X
q= fa;bg˛Qr

�
mr;k

�
log
����Mf

a;r �Mf
b;r

���+ 1
��

+br;k � log
� bCq;k;r + 1

��2
: (Equation 8)

Once optimized, the parameters bmr;k and bbr;k describe a distance dependence model function for library k and region r

(Equation 9):

Dr;kðxÞ= exp
h bmr;k logðx + 1Þ+ bbr;k

i
� 1: (Equation 9)

Explicit Normalization: Fragment Length Spline

Ligation events involving restriction fragments of different lengths have been previously shown to exhibit different bias-driven enrich-

ments for detection frequency in Hi-C data, but this relationship does not appear to follow a simple functional form (Yaffe and Tanay,

2011). Moreover, the underlying mechanisms behind fragment length bias may be different in 5C vs. Hi-C assays, due to the replace-

ment of the relatively inefficient blunt end ligation step of Hi-C with a more efficient sticky end ligation step in the 5C protocol. We

presupposed that the fragment length bias effect should in theory take the shape of a smooth surface. Therefore, we fitted a bivariate

spline to the contact detection enrichment of each ligation product, where the two variables were the respective lengths of the two
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primers involved in the ligation. The use of a spline enforced some degree of smoothness in the resulting fitted bias model, without

making strong assumptions about the functional form of the true bias curve.

To construct the spline model, we assigned Lr,p as the length of the restriction fragment queried by primer p˛Pr in region r˛R, T
as the desired number of internal knots (we chose T = 20) and d as the degree of the B-splines to be fitted (we chose d = 3 for cubic

B-splines). We selected a sequence of internal knots for spline fitting by simply taking the T-quantiles of the set L = fLr;p : p˛Pr ;r˛Rg.
We added d+1 redundant terminal knots to each end of the internal knot sequence to obtain a final knot sequence ðtiÞT +2d +2

i = 1 .

We then used least squares optimization to identify optimal spline parameters. We will call the (T+2d+1)3(T+2d+1) matrix of spline

parameters P. Then the optimization procedure finds (Equation 10):

bP = argmin
P

X
r˛R

X
k˛K

X
q= fa;bg˛Qr

 XT + 2d + 1

i = 1

XT + 2d + 1

j = 1

Bi;dðLr;aÞBj;dðLr;bÞPi;j � bbCq;k;r

!2

; (Equation 10)

where Bi,d is a B-spline of degree d at knot position ti, defined recursively according to Equations 11 and 12:

Bi;0ðxÞ=
�
1 ti%x%ti + 1
0 otherwise

: (Equation 11)

Bi;dðxÞ= x � ti
ti +d � ti

Bi;d�1ðxÞ+ ti +d+ 1 � x

ti +d + 1 � ti + 1

Bi +1;d�1ðxÞ; (Equation 12)

where
bbCq;k;r is defined according to Equation 13:bbCq;k;r = log

h bCq;k;r + 1
i
� log

h
Dr;k

����Mf
a;r �Mf

b;r

����+ 1
i
� FGCðGCr;a; GCr;bÞ; (Equation 13)

and represents the number of reads counted mapping to primer-primer junction q = {a,b}˛Qr in library k˛K and region r˛R after

sequencing depth normalization and normalized for distance dependence as well as the latest GC bias model (in accordance

with the iterative fitting procedure discussed above). Once optimized, the parameters bP describe the fragment length bias function

(Equation 14):

FlenðLr;a; Lr;bÞ=
XT +2d + 1

i =1

XT + 2d + 1

j = 1

Bi;dðLr;aÞBj;dðLr;bÞ bPi;j: (Equation 14)

Explicit Normalization: GC Content Bias Model

In 5C data, the GC content bias factor takes only a small number of discrete values due to the short length of the genome-binding

sequence of the 5C primers. Therefore, to account for GC content bias, instead of a spline model we used a simple empirical average

of contact detection enrichments for a ligation product involving fragments whose associated primers had the same GC content.

We computed
bbCq;k;r as Equation 15:bbCq;k;r = log

h bCq;k;r + 1
i
� log

h
Dr;k

����Mf
a;r �Mf

b;r

����+ 1
i
� FlenðLr;a;Lr;bÞ; (Equation 15)

where
bbCq;k;r represents the number of reads counted mapping to primer-primer junction q = {a,b}˛Qr in library k˛K and region r˛R

after sequencing depth normalization and normalized for distance dependence as well as the latest fragment length bias model (in

accordance with the iterative fitting procedure discussed above). We then define the GC bias function as an empirical average over

the sets of primer-primer junctions with identical GC contents, Qu;v
r , across all libraries in K and all regions in R (Equation 16):

FGCðu; vÞ= 1

NK 3
P

r˛R

��Qu;v
r

��X
r˛R

X
k˛K

X
q˛Qu;v

r

bbCq;k;r : (Equation 16)

Knight-Ruiz Matrix Balancing

We applied an implementation of the Knight Ruiz matrix balancing algorithm (Knight and Ruiz, 2013) published recently by Aiden and

colleagues (Rao et al., 2014). We applied the Knight Ruiz algorithm to each region r˛R and each library k˛K independently. Knight

Ruiz is an iterative algorithm that attempts to find an optimal bias vector br,k (whose pth element br;k
p is the bias factor for primer p˛Pr

in region r˛R) such that the row sums of the normalized counts matrix are as similar as possible (Equation 17):X
q= fp;ag˛Qr;p

bCq;k;r

br;k
p 3br;k

a

zS cp˛Pr ; r˛R; k˛K; (Equation 17)

for some arbitrary constant S (analogous to a row sum in a fragment-level contact matrix), whereQr,p represents the set of all queried

ligation junctions in region r˛R which involve primer p˛Pr. Since all junctions in Qr,p involve primer p, we can write them in the form
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{p,a} where a˛Pr is any other primer in region rwhich could be involved in a queried junction with primer p. After optimization, the final

normalized fragment-level counts are (Equation 18):

Xq;k =
bCq;k;r

br;k
a 3br;k

b

cq= fa;bg˛Qr ; r˛R; k˛K: (Equation 18)

Express Matrix Balancing

The Express matrix balancing algorithm was first proposed by Taylor and colleagues (Sauria et al., 2015). It is similar to Knight-Ruiz

matrix balancing in that it iteratively optimizes a single (log-scale) bias vector br,k for each region r˛R and each library k˛K, but

different in that it takes into account a regional, library-specific distance dependence expected model
�
Dr;k

����Mf
p;r � Mf

a;r

�����. It at-
tempts to make the geometric mean of the ratio of the corrected counts values to their simple distance dependence expected value

close across each row as close to 1 as possible (Equation 19):ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

q= fp;ag˛Qr;p

bCq;k;r

exp
�
br;k
a

�
3 exp

h
br;k
p

i
Dr;k

����Mf
p;r �Mf

a;r

����
jQr;p j

vuuuuuut z1: (Equation 19)

To normalize the counts values for library k˛K in region r˛R, the Express algorithm initializes the bias vector at the zeroth iteration

br,k,0=0 and then follows the update procedure (Equation 20):

br;k;n+ 1
p =br;k;n

p +

P
q= fp;ag˛Qr;p

�
log
h bCq;k;r + 1

i
� log

h
Dr;k

����Mf
p;r �Mf

a;r

����+ 1
i
� br;k;n

p � br;k;n
a

�
P

q= fp;ag˛Qr;p
2

; (Equation 20)

where br,k,n represents the bias vector for library k˛K and region r˛R after n iterations. This iteration is repeated for either 1000 iter-

ations or until the relative change in the residual is between two consecutive iterations is smaller than 1310�4. After optimization, the

final normalized fragment-level counts are (Equation 21):

Xq;k =
bCq;k;r

exp
�
br;k
a

�
3 exp

h
br;k
p

i cq= fa;bg˛Qr ; r˛R; k˛K: (Equation 21)

Joint Express Matrix Balancing

We applied aminormodification to the Express algorithmwhen processingmultiple replicates from different biological conditions. To

avoid normalizing away condition-specific effects, we constrained the Express algorithm to use one shared bias vector br for each

region r˛R across all replicates being analyzed.

The update equation thus became (Equation 22):

br;n+ 1
p =br;n

p +

P
k˛K
P

q= fp;ag˛Qr;p

�
log
h bCq;k;r + 1

i
� log

h
Dr;k

����Mf
p;r �Mf

a;r

����+ 1
i
� br;n

p � br;n
a

�
P

k˛K
P

q= fp;ag˛Qr;p
2

: (Equation 22)

After optimization, the final normalized fragment-level counts are (Equation 23):

Xq;k =
bCq;k;r

exp
�
br
a

�
3 exp

�
br
b

� cq= fa;bg˛Qr ; r˛R; k˛K: (Equation 23)

Bias Factor Heatmaps
To visualize the quantitative strength of the various bias factors and covariates we considered, we created bias factor heatmaps

similar to those used in previous analyses of bias relationships in proximity ligation data (Jin et al., 2013; Yaffe and Tanay, 2011). Pre-

vious bias factor heatmaps have often been created using only long-range (e.g., > 3 Mb or trans) contacts, and have quantified the

enrichment for the detection (read count > 0) of ligation junctions with certain properties. Because 5C datasets generally provide a

higher read depth over a much smaller area of the genome when compared to Hi-C datasets, we considered only cis contacts (within

our 5C regions) and visualized the enrichment of total detected ligations relative to a simple distance dependence background (since

our included contacts span a wide dynamic range of distance dependence background strength).

For each bias factor or covariate we considered, we first constructed groups of queried ligation junctions based on the properties

of the two fragments involved in the ligation. For GC content, we started with the previously defined groups of the form Qu,v, which

denotes all the queried ligation junctions between one primer with GC content level u and another with GC content level v. Because

relatively few primers were designed with extreme GC content values, we collapsed all GC content levels 20% and below into one

level, and all GC content levels 70% and above into another level. For fragment length, we partitioned the primers into 7 subsets of

nearly equal sizes by separating them according to the septiles of the lengths of the fragments they were designed to. We then
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collected groups of queried ligation junctions based on the fragment length septiles of the two fragments involved in the ligation. For

CTCF ChIP-seq signal enrichment, we first obtained CTCF ChIP-seq data from the GEO samples listed in the following table:

ChIPseq reads were aligned to mouse genome build mm9 using Bowtie (Langmead et al., 2009) with default parameters. PCR

duplicates and reads with more than two reportable alignments were discarded. The mapped and filtered reads were then down-

sampled to 7 million reads for each library. MACS2 (Zhang et al., 2008) was then run on these libraries with the -B/–bdg flag, and

the resulting pileup bedgraph file was converted to bigwig format with the UCSC Kent source tool bedGraphToBigWig. We then

computed the average bigwig signal (representing the ChIP-seq read pileup) over a 4 kb window centered on the midpoint of each

fragment. We then partitioned the primers into 4 subsets of nearly equal sizes by separating them according to the quartiles of this

averageCTCFsignal. Finally,wecollectedgroupsof queried ligation junctionsbasedon theCTCFsignal quartiles of the two fragments

involved in the ligation. We repeated this procedure with both ESCTCF and pNPCCTCFChIP-seq datasets. We used a fixedwindow

size of 4 kb to compute the average CTCF ChIP-seq signal to avoid creating correlations with the fragment length covariate.

After establishing groups of queried ligation junctions with similar bias factor properties, we then computed a fold-enrichment rela-

tive to the region- and library-specific distance dependence expectedmodelsDr,k(x) mentioned above. For example, the fold change

enrichment with respect to GC bias for the group of ligation junctions between primers with respective GC content levels u and v in

library k is (Equation 24):

FCGC;k
u;v =

gmean
�n bCq;k;r : q˛Qu;v

r ; r˛R
o�

gmean
�n

Dr;k

����Mf
a;r �Mf

b;r

���� : q= fa;bg˛Qu;v
r ; r˛R

o� ; (Equation 24)

where the geometric mean of a set of values S is computed as defined in (Equation 25):

gmeanðSÞ=
ffiffiffiffiffiffiffiffiffiY
s˛S

sjSj
r

: (Equation 25)

Binning and Smoothing
To perform binning and smoothing, we first tiled our 5C regions with bins of a desired bin width (for our primary analysis we chose

4 kb). This creates a set of adjacent bins indexed by the set Br = f1;.;NB;rg for each region r˛R, where NB,r is the number of bins

in region r˛R. Let the genomic coordinate representing the midpoint of a given bin b˛Br be denoted by Mb,r, computed as the

average of the start and end coordinates of the bin when the bin is represented as a half-open interval (i.e., it contains its

start coordinate but stops right before its end coordinate). We defined a collection of sets BPf = fBPf
p;r = fSf

p;r ; Sf
p;r + 1;.;

Ef
p;r � 1g : p˛Pr ; r˛Rg, where BPf

p;r is the set of base pairs covered by the fragment queried by primer p˛Pr in region r˛R, which

range across the half-open interval spanning from that fragment’s start coordinate Sf
p;r to its end coordinate Ef

p;r . Similarly, we define

BPw =
n
BPw

i;r =
n
Mi;r � w

2;Mi;r � w
2 + 1;.;Mi;r +

w
2 � 1

o
: i˛Br ; r˛R

o
, where BPw

i;r is the set of base pairs covered by a smoothing

window of width w (for our primary analysis we chose w = 16,000 for a 16 kb smoothing window) centered on the midpoint of bin

i˛Br in region r˛R. We then constructed a NB,r3NB,r matrix of binned counts for each region r˛R, by computing the geometric

mean of counts values for fragment-fragment junctions which lay within the smoothing window, according to Equation 26:

Yr;k
i;j =gmean

�
Xq;k : q= fa;bg˛Qr ;BP

f
a;rXBPw

i;r ;BP
f
b;rXBPw

j;r

�
; (Equation 26)

where Yr;k
i;j represents the binned interaction value between the i th and j th bins of region r˛R in library k˛K, and the geometric mean

of a set of values S is computed as defined in (Equation 27):

gmeanðSÞ=
ffiffiffiffiffiffiffiffiffiY
s˛S

sjSj
r

: (Equation 27)

Spatial Noise Quantification
To quantify the spatial noise in the binned contact matrices, we computed the sample variance of a three-by-three square submatrix

centered on each matrix entry, as long as the three-by-three square submatrix did not extend beyond the edges of the full

GEO Sample Description

GSM2259907 ES CTCF ChIP-seq

GSM2259908 ES Input ChIP-seq

GSM2259909 NPC CTCF ChIP-seq

GSM2259910 NPC Input ChIP-seq
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contact matrix or across its diagonal. Mathematically, the spatial variance of region r˛R for library k˛K can be written as

(Equation 28):

SVr;k =
1

ðNB;r�1Þ3NB;r

2
� NB;r

XNB;r�1

i =1

Xi�1

j = 1

Xi + 1

a= i�1

Xj + 1

b= j�1

�
Yr;k
a;b � Y

r;k

i;j

�2
; (Equation 28)

where Y
r;k

i;j is the sample mean in the three-by-three submatrix around the entry at i,j (Equation 29):

Y
r;k

i;j =
1

9

Xi + 1

a= i�1

Xj + 1

b= j�1

Yr;k
a;b: (Equation 29)

Expected Modeling Strategies
In this section we will describe one-dimensional region- and library-specific distance dependence models as functions Dr;k : N/R

where Dr;kðji � jjÞ denotes the distance-dependent expected value of the interaction between the i th bin and the j th bin of a

given region r˛R in library k˛K, given only the fact that this interaction occurs at a distance of ji � jj bin units. These region-specific

models will have analogous ‘‘global’’ alternatives which are fitted across all regions in a given library k˛K, which will be denoted with

Dkðji� jjÞ. When describing the final expected model, we will not constrain it to be one-dimensional and instead write Er;k
i;j for the

expected value of the interaction between the i th bin and the j th bin of a given region r˛R in library k˛K.
Empirical One-Dimensional Expected Model

We compute the mean of matrix entries which are the same distance from the diagonal (Equation 30):

Dr;kðji � jjÞ=mean
�n

Yr;k
a;b : a� b= i � j

o�
: (Equation 30)

This empirical model can also be computed across all regions at once, as shown in (Equation 31):

Dkðji � jjÞ=mean
�n

Yr;k
a;b : a� b= i � j; r˛R

o�
: (Equation 31)

In the following more complex one-dimensional expected models, we fall back to this simple empirical expected value for the first

1/3 of distance scales considered due to the challenge of modeling this portion of the distance dependence curve.

Log-Counts Lowess Fit One-Dimensional Expected Model

We perform a lowess regression of logðYr;k
i;j + 1Þ against (i�j), ci˛Br ;cj%i; i� j>Br

3 , with lowess smoothing fraction 1/3, to obtain a

semilog-scale lowess-fitted function function fr,k(x) for each region r˛R and each library k˛K. The final distance dependence func-

tions are then (Equation 32):

Dr;kðxÞ= exp½fr;kðxÞ� � 1: (Equation 32)

We can also fit this samemodel across all regions (including all contacts at distances i� j>
max
r˛R

Br

3 ) to obtain a semilog-scale lowess-

fitted function fk(x) for each library k˛K. The final global distance dependence function is then (Equation 33):

DkðxÞ= exp½fkðxÞ� � 1: (Equation 33)

Since this fitting is performed on the scale of logged counts, the fitted values are not expected values strictly speaking. For our

standard pipeline, we therefore use the empirical one-dimensional expected model described above instead. For the regional

one-dimensional expected variant pipeline, we use this lowess smoothed model since the regional empirical expected is somewhat

noisy (Figure S4A).

Donut Expected Model

We also computed the local donut expected as first reported by Aiden and colleagues (Rao et al., 2014). The local donut expected is a

local correction factor by which a simple one-dimensional distance dependence model can be adjusted to adapt to local domain

structure in the counts matrix. As proposed in (Rao et al., 2014), the local correction factor can be computed based on a series of

different local windows positioned relative to the bin-bin pair whose expected value is being computed. We computed the ‘‘donut

filter’’ as well as the ‘‘lower left filter’’ (Figure S4C) and chose the larger of these two results to be the final expected value. The sizes

of donut and lower left filters are determined by parameters w and p, which determine the outer and inner radii of the donut window,

respectively (Figure S4C). For this paper, we chose w=15, p=5. We also chose to compute the values of the filters using the global

expected models Dkðji � jjÞ since the local correction factor accounts for differences on an even smaller scale than individual

regions of the 5C primer design. The donut filter value for the interaction between the i th bin and the j th bin of a given

region r˛R in library k˛K is (Equation 34):

DFr;k
i;j =Dkðji � jjÞ3

Pi +w
a= i�w

Pj +w
b= j�wY

r;k
a;b �

Pi +p
a= i�p

Pj +p
b= j�pY

r;k
a;b �

Pi�p�1
a= i�wY

r;k
a;j �

Pi +w
a= i +p+ 1Y

r;k
a;j �

Pj�p�1
b= j�wY

r;k
i;b �Pj +w

b= j +p+ 1Y
r;k
i;bPi +w

a= i�w

Pj +w
b= j�wDkðja� bjÞ �Pi +p

a= i�p

Pj +p
b= j�pDkðja� bjÞ �Pi�p�1

a= i�wDkðja� jjÞ �Pi +w
a= i +p+ 1Dkðja� jjÞ �Pj�p�1

b= j�wDkðji � bjÞ �Pj +w
b= j +p+ 1Dkðji � bjÞ :

(Equation 34)
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The lower left filter value for the interaction between the i th bin and the j th bin of a given region r˛R in library k˛K is (Equation 35):

LLFr;k
i;j =Dkðji � jjÞ3

Pi +w
a= i + 1

Pj�1
b= j�wY

r;k
a;b �

Pi +p
a= i + 1

Pj�1
b= j�pY

r;k
a;bPi +w

a= i + 1

Pj�1
b= j�wDkðja� bjÞ �Pi +p

a= i + 1

Pj�1
b= j�pDkðja� bjÞ : (Equation 35)

Our final donut expected value (taking the largest result among the two filters considered) is (Equation 36):

Er;k
i;j =max

h
DFr;k

i;j ; LLFr;k
i;j

i
: (Equation 36)

For expected models that are one-dimensional and do not use the donut correction factor, we write our final estimate of the

expected value of the interaction between the i th and j th bins of region r˛R for library k˛K as (Equation 37):

Er;k
i;j =Dr;kðji � jjÞ; (Equation 37)

or for global expected models (Equation 38):

Er;k
i;j =Dkðji � jjÞ: (Equation 38)

Variance Modeling Strategies
Variance Modeling Overview

Our variancemodeling strategies proceed in two stages. First, we obtain independent pixel-wise variance estimates. Second, we fit a

trend between distance and variance using these pixel-wise estimates. Before we introduce the pixel-wise variance estimation

methods, we will first set up our statistical model and explain how the variance in the statistical model may be broken down and

understood.

Lognormal Variance Model

We propose the following lognormal null model for reasoning about variance in 5C data (Equation 39)

Yr;k
i;j � Lognormal

�
Er;k
i;j ;V

r;k
i;j

�
; (Equation 39)

where Yr;k
i;j and Er;k

i;j are the observed and expected values, respectively, for the interaction between the i th bin and j th bin in region

r˛R in library k˛K. Vr;k
i;j represents the variance of the observed value around its expected value. The intuition for this null model is that

in the absence of loops, observed values Yr;k
i;j should be scattered around the donut expected value Er;k

i;j with some unknown variance

Vr;k
i;j . In the presence of loops, the observed values Yr;k

i;j should be significantly higher than expected under this null model.

The lognormal model in Equation 39 is equivalent to a corresponding normal model (Equation 40)

log Yr;k
i;j � Normal

	
m
r;k
i;j ;
�
s
r;k
i;j

�2

; (Equation 40)

where m
r;k
i;j and ðsr;ki;j Þ

2
represent the mean and variance, respectively, of a normal distribution that describes the distribution of the

logged observed counts log Yr;k
i;j . The model in Equation 40 can also be rewritten as (Equation 41)

log Yr;k
i;j =m

r;k
i;j + 3

r;k
i;j ; (Equation 41)

where 3
r;k
i;j is a normally distributed error term with mean zero and variance ðsr;ki;j Þ

2
(Equation 42)

3
r;k
i;j � N

	
0;
�
s
r;k
i;j

�2

: (Equation 42)

We will perform certain estimation steps in terms of ðsr;ki;j Þ
2
for simplicity. If we estimate ðsr;ki;j Þ

2
, then the two parameters we have in-

hand, ðsr;ki;j Þ
2
and Er;k

i;j , describe different transformations of the observed counts Yr;k
i;j (Er;k

i;j is an expected value for unlogged counts,

while ðsr;ki;j Þ
2
is a variance for logged counts), sowecannot useboth of theseparameters to parameterize onedistribution.We therefore

convert estimates of ðsr;ki;j Þ
2
back to the scale ofVr;k

i;j (the scale of the original, unlogged counts values) using the known expected value

Er;k
i;j when visualizing variance estimates (as in Figures 6A and 6B) or when parameterizing distributions (as in Figure 6C). In order to do

this, we will leverage the following relationships, which follow from the properties of the lognormal distribution (Equations 43 and 44):

m
r;k
i;j = log Er;k

i;j �
�
s
r;k
i;j

�2
2

: (Equation 43)

Vr;k
i;j =

	
exp

	�
s
r;k
i;j

�2

� 1



3 exp

	
23m

r;k
i;j +

�
s
r;k
i;j

�2

: (Equation 44)
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Per-Pixel Variance Estimators

Having obtained observed values Yr;k
i;j from the biased corrected and binned contact matrices, and expected values Er;k

i;j from the

donut expected, we next considered approaches for estimating the variance Vr;k
i;j

�
or
�
s
r;k
i;j

�2�
to complete the parameterization of

our statistical model. We considered two different per-pixel estimators (i.e., they compute an estimate using data from only one pixel)

for ðsr;ki;j Þ
2
: an inter-replicate variance estimate and an intra-replicate deviation-based variance estimate.

Inter-replicate Variance Estimation

To obtain the inter-replicate variance for each pixel, we computed the sample variance of the logged counts across all libraries with

the same biological condition (Equations 45 and 46):

bmr;c

i;j =
1

jKcj
X
k˛Kc

log
�
Yr;k
i;j + 1

�
; (Equation 45)

�bsr;c

i;j

�2
=

1

jKcj � 1

X
k˛Kc

�
log
h
Yr;k
i;j + 1

i
� bmr;c

i;j

�2
; (Equation 46)

where Yr;k
i;j is the observed count value between the i th and j th bins in region r˛R, Kc4K represents the subset of all libraries cor-

responding to a specific biological condition c, and ðbsr;c

i;j Þ
2
represents the sample variance of the logged counts across all libraries

with the same biological condition.

For any individual pixel, the corresponding variance estimate on the scale of the original counts bV r;k

i;j can then be obtained as the

variance of the lognormal distribution whose mean is Er;k
i;j and whose corresponding normal distribution has variance ðbsr;c

i;j Þ
2
(Equa-

tions 47 and 48):

bmr;k

i;j = log Er;k
i;j �

�bsr;c

i;j

�2
2

: (Equation 47)

bV r;k

i;j =

	
exp

	�bsr;c

i;j

�2

� 1



3 exp

	
23 bmr;k

i;j +
�bsr;c

i;j

�2

: (Equation 48)

These are the variance values plotted in blue hexbins in the ‘‘Inter-replicate Variance’’ column of Figures 6A and 6B.

Intra-replicate Deviation Variance Estimation

Under the assumptions of our statistical model, Vr;k
i;j quantifies how different the observed values Yr;k

i;j are from the expected values

Er;k
i;j . To obtain intra-replicate variance estimates for each pixel, we considered directly fitting the noise term in our model. Starting

from our normal statistical model (Equation 41), we estimated the variance of the noise term as the average squared residual between

what we expect given the donut model and what we actually observe (Equation 49):�
s
r;k
i;j

�2
=Var

h
3
r;k
i;j

i
=E

��
log Yr;k

i;j � m
r;k
i;j

�2�
; (Equation 49)

where Var[X] represents the variance of a random variable X and E[X] represents the expected value of a random variable X. In prac-

tice, mr;k
i;j , the mean of the normal distribution corresponding to the lognormal distribution we are effectively fitting, depends on ðsr;ki;j Þ

2

via Equation 43, so we use log½Er;k
i;j + 1� as an upward-biased estimate of the expected value (an unbiased estimate could theoretically

be obtained by logging the geometricmean expected value instead of Er;k
i;j ). However, this should still lead to estimates of the variance

that are conservative on average, since the average squared deviation can only get larger as wemove the log½Er;k
i;j + 1� term away from

its unbiased estimator. Later, when evaluating statistical significance, we will not make this assumption.

Plugging in log½Er;k
i;j + 1� for mr;k

i;j and computing the estimate for only one pixel in one replicate, we obtain our per-pixel intra-replicate

deviation-based variance estimator (Equation 50):�b~sr;k

i;j

�2
=
�
log
h
Yr;k
i;j + 1

i
� log

h
Er;k
i;j + 1

i�2
: (Equation 50)

For any individual pixel, the corresponding variance estimate on the scale of the original counts
b~V r;k

i;j can then be obtained as

the variance of the lognormal distribution whose mean is Er;k
i;j and whose corresponding normal distribution has variance ðb~sr;k

i;j Þ
2

(Equations 51 and 52):

b~mr;k

i;j = log Er;k
i;j �

�b~sr;k

i;j

�2
2

: (Equation 51)
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b~V r;k

i;j =

	
exp

	�b~sr;k

i;j

�2

� 1



3 exp

	
23 b~mr;k

i;j +
�b~sr;k

i;j

�2

: (Equation 52)

These are the variance values plotted in blue hexbins in the ‘‘Deviation Variance’’ and ‘‘Constant Variance’’ columns of Figures 6A

and 6B.

Variance Relationship Fitting

Our per-pixel variance estimates are computed with a small number of observations (one under the intra-replicate deviation variance

model, or one for each library k˛Kc under the inter-replicate variance model). Therefore, a more accurate model of the relationship

between the mean and the variance can be obtained by combining information across bin-bin pairs. We observed a strong relation-

ship between the per-pixel variance estimates and genomic interaction distance (Figure 6A). Therefore, we used lowess to the trend

between the per-pixel variance estimates ðbsr;k
i;j Þ

2
and the genomic interaction distance ji�jj (which is closely correlated with expected

value Er;k
i;j ). We include data from all regions in one global fit. Together, this approach yields a library-specific (but not region-specific)

Distance-Variance Relationship (DVR) function (Equation 53):�bbs r;k

i;j

�2
= fkðji � jjÞ; (Equation 53)

where ðbbs r;k

i;j Þ
2

represents the smoothed variance parameter estimate (i.e., our best estimate for the variance of the normally distrib-

uted error term 3
r;k
i;j in the statistical model in Equation 41) for the interaction between the i th and j th bins in region r˛R in library k˛K.

We note that there are potential sources of bias in our estimation of ðbbs r;k

i;j Þ
2

. First, when using deviation-based per-pixel variance

estimates, our estimates of ðbbs r;k

i;j Þ
2

are biased upwards by the presence of true positive looping pixels in the set of all points to which

the trend is fitted, which have larger deviations from their expected values than the true null pixels (since they are engaged in real

loops). Second, since the sampling distribution of the sample variance is right-skewed, the lowess-fitted variance estimates are

biased downward due to the residual-based weighting used in the lowess procedure to reduce the effect of outliers.

When parameterizing distributions (as in Figure 6C), we apply the relationships in Equations 43 and 44 to obtain (Equations 54

and 55):

bbm r;k

i;j = log Er;k
i;j �

�bbs r;k

i;j

�2
2

; (Equation 54)

bbV r;k

i;j =

	
exp

	�bbs r;k

i;j

�2

� 1



3 exp

	
23 bbm r;k

i;j +
�bbs r;k

i;j

�2

; (Equation 55)

where
bbV r;k

i;j is the variance of the lognormal distribution describing unlogged observed values Yr;k
i;j , fitted using the DVR function from

Equation 53.

Finally, in order to visualize the fitted variance estimates ðbbs r;k

i;j Þ
2

as a function of genomic distance, we used our fitted variance es-

timates to estimate a variance for each distance scale ji�jj, again applying the relationships in Equations 43 and 44. However, we

could not directly plug Er;k
i;j into Equation 43 because there are many different values of Er;k

i;j at each distance scale ji�jj; therefore,
we replaced Er;k

i;j with an average value for that distance scale (computed by performing a global log-counts lowess fit between

the donut expected values Er;k
i;j and their genomic interaction distances ji � jj across all regions r˛R). This allowed us to obtain (Equa-

tions 56–58): �bbs k

ji�jj
�2

= fkðji � jjÞ; (Equation 56)

bbm k

ji�jj = logðDkðji � jjÞÞ �
�bbs k

ji�jj
�2

2
; (Equation 57)

bbV k

ji�jj =

	
exp

	�bbs k

ji�jj
�2


� 1



3 exp

	
23 bbm k

ji�jj +
�bbs k

ji�jj
�2


; (Equation 58)

where Dk(x) represents an average expected value at distance x as mentioned above, and
bbV k

ji�jj represents an averaged smoothed

variance estimate for interactions at distance ji � jj in library k˛K. We then visualized the trend between genomic distance ji � jj and
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variance
bbV k

ji�jj as the red curves in the ‘‘Inter-replicate Variance’’ and ‘‘Deviation Variance’’ columns of Figures 6A and 6B (fitting the

DVR to ðbsr;c

i;j Þ
2
and ðb~sr;k

i;j Þ
2

, respectively).

Constant Variance Fitting

For comparison to the lowess-fitted variance trends,wefitted a single constant value to themeanvalue of the intra-replicate deviation-

based variance estimates on the scale of the original counts
b~V r;k

i;j , using the same residual-based reweighting implemented by the low-

ess procedure. This is equivalent to performing a lowess fit of
b~V r;k

i;j against non-correlated randomnoise but has the advantage of being

deterministic. This constant variance valuewas then plotted as the red curve in the ‘‘Constant Variance’’ column of Figures 6A and 6B.

Relationship between Inter-replicate and Intra-replicate Deviation Variance

We observed that the inter-replicate variance model appeared to underestimate the variance in the data compared to the intra-repli-

cate deviation variance model (Figures 6A–6C). While the full investigation of the relationship between these approaches remains an

interesting area for future work, we propose a few speculative hypotheses below.

We speculate that the inter-replicate variance model may implicitly assume that the donut expected value Er;k
i;j is an unbiased,

noiseless estimator for the mean observed value across replicates Y
r

i;j at all null (non-looping) pixels. If it is not, then pixels where

Y
r

i;j>E
r;k
i;j may be called significant even when they are not actually looping. These pixels are looping in the sense that Y

r

i;j>E
r;k
i;j , but

they are not looping in the sense that the elevation of Y
r

i;j over E
r;k
i;j is driven by downward bias or noise in Er;k

i;j at this pixel rather

than by biological elevation of Y
r

i;j. This may happen quite often if the inter-replicate variance V
r;k

i;j is low compared to the size of

the bias or noise in Er;k
i;j . We suspect that this effect may drive underestimation of the variance under the inter-replicate variance

model. We speculate that the intra-replicate deviation variance model has the potential to include biases and noise in Er;k
i;j in its vari-

ance estimate since it takes Er;k
i;j into account in the estimation.

We also speculate that the intra-replicate deviation-based variance model may capture some components of the inter-replicate

variance that are distributed across pixels rather than experiments, such as randomness arising from the sampling of detected liga-

tion junctions. Other components of the inter-replicate variance, such as variation due to biological variability or batch effects across

experiments, are presumably not included in the intra-replicate deviation-based variance model.

Distribution Parameterization and P-Value Computation
To judge the statistical significance of each observed interaction value Yr;k

i;j , we parameterized a lognormal distribution with mean Er;k
i;j

and variance
bbV r;k

i;j for each pixel. Theseare theblueparameterizeddistributions shown in Figure 6C. The statisticalmodel in Equation 39

represents our null hypothesis, while our alternative hypothesis (corresponding to looping interactions) is that the observed counts are

greater thanweexpectunder thismodel.We therefore compute right-tail P-valuesusing this fitteddistribution according toEquation59

Pr;k
i;j =P

�
XRYr;k

i;j

�
; X � Lognormal

	
Er;k
i;j ;

bbV r;k

i;j



: (Equation 59)

Interaction Classification
To classify cell type-specific interactions, we first applied Benjamini-Hochberg (BH) multiple testing correction to the right-tail

P-values, controlling the false discovery rate (FDR) at 10%. To reduce the impact of noise on our interaction calls, we excluded

interactions with interaction distances shorter than 24 kb from consideration, as well as interactions which lay in connected compo-

nents with 3 or fewer members (i.e., clusters of pixels smaller than four pixels in size). We also discarded interactions which were only

significant in one replicate of a given condition and did not reproduce in the other replicate. We then overlapped concordant signif-

icant interactions across conditions, calling points which were significant in both conditions ‘‘constitutive’’ and those points which

were significant in only one condition ‘‘ES-only’’ or ‘‘pNPC-only’’, according to which of the two conditions they were significant.

We note that this additional stringency reduces our effective FDR below its nominal value after BH correction. Additionally, we

selected a background threshold P-value b (we chose b=0.6) and created a background class of points which had P-values above

this threshold in all libraries analyzed (Equation 60):

B=
n
ði; j; rÞ : Pr;k

i;j >b c k˛K
o
: (Equation 60)

Enrichments
To compute enrichments of genomic annotations with our classified interactions, created the following two-by-two contingency table

for each combination of interaction class and genomic annotation tested:

In Interaction Class In Background Class

Intersects annotation a b

Does not intersect annotation c d
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We considered an interaction as intersecting an annotation if the annotation lay either within one of the two bins involved in the

interaction, or one bin away from either of these bins. We computed a fold-enrichment for each combination of interaction class

and genomic annotation as a=c
b=d, and computed a P-value by applying Fisher’s exact test to the two-by-two contingency table.

One-dimensional genomic annotations were obtained from Tables S5–S18 of Beagan et al. (2017).

Convergency Analysis
To perform the CTCF convergency analysis, we first obtained a list of CTCFmotifs present in the mm9 reference genome, with asso-

ciated orientation information. We then intersected this list with CTCF ChIP-seq peaks in the cell type under consideration (either ES

or pNPC) to get a list of occupiedmotifs. Next, we intersected this list of occupiedmotifs with the interactions which were found to be

significant in the cell type under consideration, considering each of the two bins involved in the interaction separately. If either anchor

contained no occupied CTCF sites, we excluded this interaction from the analysis. If either anchor contained occupied CTCF sites

with a mixture of motif orientations, we also excluded this interaction from the analysis. If both anchors contained occupied CTCF

sites with a unique motif orientation, we noted the relative orientations of the two motifs counted this as an intersection in cell a of

a two-by-two contingency table specific to that relative orientation o:

We then computed the fold enrichment of each relative orientation o as
a=c

b=d
, taking the entries from the contingency table specific

to relative orientation o.

Hi-C Data Comparison
To compare the results of analysis to Hi-C data, we obtained the following datasets from (Bonev et al., 2017):

Replicates from the same cell type were combined. Raw reads were mapped using HiC-Pro (Servant et al., 2015) using default

parameters. Contact matrices were assembled at 10kb resolution and subsequently balanced using the Knight-Ruiz algorithm im-

plemented in Juicer (Durand et al., 2016).

H3K27ac ChIP-seq Track Processing
The H3K27ac ChIP-seq tracks visualized in Figures 4, 5, 7, and S5 were processed as follows. First, the following datasets were ob-

tained from Creyghton et al. (2010):

Reads were aligned to mouse genome build mm9 using Bowtie (Langmead et al., 2009) with default parameters. PCR duplicates

and reads with more than two reportable alignments were discarded. The mapped and filtered reads were then downsampled

to 7 million reads for each library. MACS2 (Zhang et al., 2008) was then run on these libraries with the -B/–bdg flag, and the resulting

pileup bedgraph file was converted to bigwig format with the UCSC Kent source tool bedGraphToBigWig. Finally, the pileup distri-

butions were quantile normalized to create the final bigwig files used for visualization.

GEO Sample Description

GSM594579 ES H3K27ac ChIP-seq

GSM594585 NPC H3K27ac ChIP-seq

Interaction Significant in Cell Type Interaction in Background Class

Has relative orientation o a b

Does not have relative orientation o c d

GEO Sample Cell Type

GSM2533818 ES

GSM2533819 ES

GSM2533820 ES

GSM2533821 ES

GSM2533822 NPC

GSM2533823 NPC

GSM2533824 NPC

GSM2533825 NPC
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QUANTIFICATION AND STATISTICAL ANALYSIS

The line plots in Figure 2B show the mean count value of groups of primer-primer ligation junctions within an interaction distance bin

(one of 30 evenly-spaced bins between 0 kb and 600 kb inclusive). In the boxplots in Figure S2A, the red lines indicate themedian, the

boxes indicate the IQR, and the whiskers extend to 2.5 times the IQR. The p-values shown on Figure 7D are computed using Fisher’s

exact test on a two-by-two contingency table:

and the fold-enrichments shown (on a log2 scale) are computed as
a=c

b=d
.

DATA AND SOFTWARE AVAILABILITY

The software package developed to perform the analyses in this paper is available as a Python packagewith full usage instructions on

Bitbucket at https://bitbucket.org/creminslab/lib5c/ The accompanying README file is also included within the Supplemental Infor-

mation as Data S1.

In Interaction Class In Background Class

Intersects annotation a b

Does not intersect annotation c d
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