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Abstract

An important unanswered question in chromatin biology is the extent to which
long-range looping interactions change across developmental models, genetic
perturbations, drug treatments, and disease states. Computational tools for rigorous
assessment of cell type-specific loops across multiple biological conditions are
needed. We present 3DeFDR, a simple and effective statistical tool for classifying
dynamic loops across biological conditions from Chromosome-Conformation-
Capture-Carbon-Copy (5C) and Hi-C data. Our work provides a statistical framework
and open-source coding libraries for sensitive detection of cell type-specific loops in
high-resolution 5C and Hi-C data from multiple cellular conditions.

Keywords: 3D chromatin looping interactions, Higher-order chromatin architecture,
Epigenetics, Chromosome-conformation-capture, Chromatin dynamics, False
discovery rate

Introduction
Chromosome-Conformation-Capture (3C)-based molecular techniques have recently

been coupled with high-throughput sequencing to generate genome-wide maps of

higher-order chromatin folding [1–3]. A number of massively parallel 3C-based tech-

nologies query genome folding in a protein-independent manner, including Hi-C, 4C,

5C, and Capture-C [4–10]. All four techniques rely on proximity ligation and high-

throughput sequencing to convert physically connected chromatin fragments into

counts of specific interaction events. Briefly, chromatin is fixed in its native architec-

tural state across a population of cells and then digested with a restriction enzyme. Re-

striction fragments are ligated to form billions of hybrid ligation junctions between

two distal genomic loci. The two fragments in a given ligation junction can then be

identified using high-throughput sequencing, and their frequency of ligation is propor-

tional to their spatial proximity across a population of cells. Hi-C detects all chromatin

interactions genome-wide using high-throughput sequencing, whereas 5C and

Capture-C use tiled probes to selectively sequence large, megabase-scale subsets of the
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genome. 4C queries all genome-wide contacts involving a single chosen restriction frag-

ment. Thus, the protein-independent 3C technologies of Hi-C, 5C, and Capture-C can

be used to create high-resolution spatial maps of genome folding on the scale of a few

megabases to genome-wide coverage.

Recently published 3C-based sequencing studies have revealed that the mammalian

genome is folded into a hierarchy of distinct architectural features, including A/B com-

partments, lamina-associated domains (LADs), topologically associating domains

(TADs), subTADs, and long-range looping interactions [6, 8, 10–19]. Loops—groups of

adjacent pixels which form a punctate focal increase in interaction frequency enriched

above local TAD and subTAD structure—have been identified algorithmically in high-

resolution Hi-C maps [11]. The highest resolution maps to date have enabled the de-

tection of tens of thousands of looping interactions genome-wide [11, 20]. A subset of

looping interactions occur at the corners of TADs/subTADs and are known as “corner

dots.” A leading model for the mechanism of corner dot formation is that cohesin

tracks along the chromatin fiber until it is blocked by the architectural protein CTCF,

thus extruding out the intervening DNA [21–26]. Corner dot TADs/subTADs an-

chored by CTCF are thought to demarcate the search space of enhancers for their tar-

get promoters [27–31]. Moreover, enhancers can also connect directly to target genes

via corner dots in a CTCF-dependent and CTCF-independent manner [32–35]. Initial

studies have suggested that specific subsets of looping interactions can reconfigure in

development, disease, and in response to genetic perturbations [20, 29, 32, 33, 36–42].

Generally, however, it remains unknown to what extent loops are dynamically altered

genome-wide as cells switch fate, due in part to the relative paucity of computational

methods to evaluate statistically significant changes in interaction frequency across

multiple biological conditions.

As high-resolution Hi-C and 5C chromatin folding maps begin to accumulate in de-

velopmentally relevant cellular models, there is an increasing need for methods to (1)

precisely detect loops and clearly distinguish them from other classes of architectural

features such as local TAD/subTAD structure and compartments and (2) rigorously

classify loops by their dynamic behavior across cell types. A number of computational

methods report the ability to identify loops in individual libraries generated by Hi-C.

Bicciato and colleagues performed a detailed comparison of Hi-C loop calling pipelines,

including HiCCUPS [43], GOTHiC [44], HOMER (http://homer.ucsd.edu/homer/inter-

actions/), diffHic [45], HIPPIE [46], and Fit-Hi-C [47]. The conclusion from this study

was that loop calling methods in individual samples exhibit vastly different perform-

ance, with no clear gold standard emerging [48]. Importantly, most loop calling pipe-

lines were developed on low-resolution maps (40 kb up to 1Mb bins) generated with

the first-generation dilution Hi-C experimental procedure. More recently, Hi-C maps

have achieved 1–5-kb resolution through higher read depth and markedly reduced

spatial noise due to second generation in situ ligation and digestion techniques [11, 20].

We also note that active, unsynchronized extrusion events could create long-range in-

teractions within TADs/subTADs that do not manifest as punctate loops in a 5C/Hi-C

heatmap (i.e., transient loops in the making) [24]. Thus, it is likely that first generation

loop calling algorithms show a wide dynamic range of performance because they were

developed on lower resolution first-generation Hi-C maps and did not explicitly distin-

guish loops from general non-specific, long-range interactions. The emerging model
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from second-generation Hi-C studies is that quantitative loop detection in individual li-

braries requires rigorous modeling of local chromatin domain structure. HiCCUPS ex-

plicitly models and accounts for locus-specific TAD/subTADs [11], and accounting for

local chromatin domain structure has therefore emerged as a leading candidate for

identifying bona fide loop structures (i.e., persistent loops) in individual Hi-C maps.

Building upon advances in Hi-C, similar statistical methodologies have been applied in

lib5C to find loops in individual 5C maps [49].

To our knowledge, computational tools are not yet available to statistically test loops

for their differential signal across two or three conditions in 5C data. Three tools

(diffHic [45], FIND [50], and HiBrowse [51]) have been published to identify generally

differential interactions between conditions in Hi-C data. All three methods in their

published, first-generation form were not designed or verified to distinguish loops from

higher-order folding patterns such as A/B compartments, TADs, subTADs, or non-

specific long-range interactions [50]. In the absence of accounting for these features, a

large proportion of the differential interactions identified may be due to cell type-

specific fluctuations related to technical biases, local chromatin domains, extrusion

lines, or higher-order compartments. Noteworthy, the diffHic manuscript indicates that

modeling local chromatin domain structure would be essential to evaluate cell type-

specific loops, suggesting that second-generation tools which accomplish this might be

available in the future [45]. Computational tools have also been published to call

within- and across-condition loops from libraries generated by Hi-ChIP and ChiA-PET

assays [52–57]. However, statistical frameworks built for protein-dependent 3C-

methods cannot address the technical challenges unique to 5C and Hi-C data. Overall,

a gold-standard statistical methodology for cell type differential loop detection in

protein-independent proximity ligation data (both 5C and Hi-C) is an important unmet

need.

Here, we present 3DeFDR, a new statistical method and software implementation for

identifying cell type-specific looping interactions from genome-wide Hi-C (3DeFDR-

HiC) and locus-specific 5C (3DeFDR-5C) data across two or three biological condi-

tions. For locus-specific 5C matrices, 3DeFDR-5C computes an empirical false discov-

ery rate (eFDR) by applying a thresholding scheme on the change in interaction score

signal on real 5C libraries from multiple biological conditions and pseudo-replicates

simulated from the same biological condition. We implement a controlling procedure

in which we iterate thresholds to achieve an a priori determined eFDR under the as-

sumption that all thresholded pseudo-replicate interactions simulated from the same

condition are false positives. For genome-wide Hi-C matrices, 3DeFDR-HiC formulates

a negative binomial likelihood ratio test parameterized with a Distance-Dispersion-

Relationship (DDR) for every pixel engaged in persistent loops genome-wide. Cell type-

specific loops called by 3DeFDR-5C have fewer false positives and are more strongly

enriched for chromatin modifications characteristic of the cellular state in which the

loops are present compared to (i) an established ANOVA test and (ii) our own newly

formulated parametric likelihood ratio test (3DLRT). We also benchmarked 3DeFDR-

HiC against the leading published Hi-C non-specific differential interaction calling

method diffHic and demonstrate superior performance. 3DeFDR-5C, 3DeFDR-HiC,

and the parametric benchmarking test 3DLRT are freely available as Python packages

to support the next wave of discoveries in cell type-specific looping.
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Results
We set out to address a critical challenge in the analysis of looping interactions in 5C

data: the paucity of methods for robustly classifying dynamic loops across multiple cel-

lular conditions, a problem which becomes more challenging as the number of condi-

tions increases. Our goal was to develop a statistical framework and software

implementation to rigorously identify differential loops from 5C maps across two or

three conditions using a target FDR to choose thresholds (Fig. 1a).

First, we developed, applied, and benchmarked 3DeFDR-5C using 5C data across

three distinct cellular states: mouse embryonic stem (ES) cells cultured in 2i media

representing a naive pluripotent state, mouse ES cells cultured in LIF/serum represent-

ing the primed pluripotency state, and primary neural progenitors isolated from neo-

natal mice representing a multipotent adult stem cell state in the neuroectoderm

lineage (Additional file 1: Table S1) [32]. These particular 5C datasets represent large-

scale, 4-kb-resolution maps capturing 8Mb of genomic sequence around key develop-

mentally regulated genes. 5C relies on a primer-based hybrid capture step to selectively

detect ligation junctions across specific genomic regions, thus enabling the creation of

high-resolution matrices with a strikingly lower number of reads (~ 30–40 million per

sample) compared to Hi-C (~ 3–6 billion per sample). We have recently determined

that loops are markedly reconfigured during the transition from naive pluripotency to

multipotency, thus making this dataset ideal for the testing and development of our

statistical framework. We tested and validated 3DeFDR-5C with a three cellular state

experiment, but the statistical framework and code are also able to analyze a two cellu-

lar state experiment.

We first started by modeling and correcting biases, artifacts, and local chromatin do-

mains in individual replicates. Despite their nuanced technical differences, data from

protein-independent proximity ligation techniques share several common features, in-

cluding: (1) distance-dependent background interaction signal in which non-specific

interaction frequency is highest for the closest fragment-fragment pairs on the linear

genome and decays as the distance separating the genomic fragments increases [6], (2)

biases in ligation and amplification frequency caused by GC content and length of re-

striction fragments [58, 59], (3) library complexity and sequencing depth differences

across independent experiments for the same biological sample leading to nonlinear

batch effects [60], and (4) highly locus-specific structure due to higher-order folding of

chromatin into TADs, subTADs, and compartments [11]. One must model and address

these features to ensure a rigorous analysis of looping interactions.

We reasoned that a differential loop calling method would have the most utility

across protein-independent proximity ligation data if it started with a modified inter-

action score (IS) in which background signal as well as per-replicate and per-pixel con-

founding factors had been corrected. We recently discovered that sequence-related

biases are not constant across cell types and replicates. Therefore, as is routinely done

with Hi-C data, we used matrix balancing to correct for fragment-specific biases caused

by GC content and restriction fragment length for every replicate individually (detailed

in the “Methods” section). We also used conditional quantile normalization to

normalize all replicates for non-linear library complexity and sequencing depth differ-

ences (detailed in the “Methods” section). It is widely known that the distance-

dependent background signal and local chromatin domain structure are widely variable
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across cell types and highly unique to each genomic region. Thus, we used the donut

and lower left filters [11, 32] to model the distance-dependent and TAD/subTAD ex-

pected background signal for every interaction in the genome and every replicate indi-

vidually (detailed in the “Methods” section). After bias correction, background

Fig. 1 Overview of interaction score thresholding procedure for cell type-specific looping interaction classification. a A
5C dataset is input as a set of interaction frequency matrices, with each matrix capturing the same set of genomic
contacts under a different cellular condition. b Raw 5C counts are converted to interaction scores (IS) which reflect
bias-corrected, sequencing depth normalized, local expected background signal normalized, and statistically modeled
interaction frequency values that are comparable within and between conditions under the assumptions of our
model (detailed in the “Methods” section and Fig. 4). c Interaction scores are thresholded to allow detection and
classification of looping interactions that are significantly differential across cellular conditions. d Seven looping
interaction classes after a 3-way thresholding scheme on ES-2i, ES-serum, and NPC cellular states. e IS heatmaps at
two selected genomic loci. Green boxes highlight regions of qualitatively apparent differences in looping signal. f
Loop classification results after applying 3DeFDR-5C’s 3-way IS thresholding procedure
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normalization, and expected modeling, we assigned p values to every pixel in the 5C

heatmap and computed an interaction score (IS) that allows for direct comparison of

each bin-bin pair across replicates and conditions under the assumption that the repli-

cates are similarly powered (Fig. 1). Moreover, the use of modeled IS as the random

variable for differential testing allows 3DeFDR to have utility for matrices of any

protein-independent 3C-based data that have been bias corrected, normalized, mod-

eled, and transformed into p values using analysis techniques tailored to the specific

method.

To identify differential looping interactions, we used a classification technique that

relies on three-way thresholding on the difference in IS across cellular conditions (Fig.

1, Additional file 2: Fig. S1, Additional file 3: Table S2). For each biological replicate,

we began with a framework in which IS is a square, symmetric matrix of interaction

scores from a modeled and bias-corrected 5C experiment. The matrix IS has dimen-

sions n by n, where n is the number of genomic bins in any particular genomic region,

r. We use ISts;r;k;l to refer to the interaction score between genomic bins k and l in re-

gion r as recorded for biological replicate s of condition t (detailed in the “Methods”

section). We first identify potential looping interactions by parsing only bin-bin interac-

tions with an ISts;r;k;l greater than a specific significance threshold g for all replicates in

at least one condition (purple lines, Fig. 1). We then apply a series of thresholds (or-

ange lines, Fig. 1c) on the difference in ISts;r;k;l across all three cellular conditions (Add-

itional file 2: Fig. S1E-G, Additional file 3: Table 2S). To ensure the most conservative

estimate of looping classes, we apply the thresholds on the minimum difference in IS

across replicates of each condition. Thus, the end result is a preliminary set of

seven classes of looping interactions: (1) ES-2i only, (2) ES-serum only, (3) NPC

only, (4) ES-2i and ES-serum only, (5) ES-2i and NPC only, (6) ES-serum and

NPC only, and (7) constitutive across all three cell types (Fig. 1). Examples of ES-

2i only, ES-2i and ES-serum only, and NPC only interactions are illustrated in

Fig. 1, f.

We next used estimation and control of an empirical false discovery rate (eFDR) to

guide the final placement of the difference thresholds for each looping class (orange

lines, Fig. 1c, detailed in the “Methods” section). The false discovery rate (FDR) is by

definition FDR = E[V/R] where V is the number of false positives among tests declared

significant and R is the total number of tests declared significant. Here, R is trivial to

compute from our set of three conditions (T = {A, B,C} where A is ES-2i, B is ES-

serum, and C is NPC) and six replicates (S = {A1, A2, B1, B2,C1, C2}) as the total num-

ber of significant bin-bin interactions in a given looping class (H = {{A}, {B}, {C}, {A, B},

{A, C}, {B,C}}). However, V is not known and requires a method for estimating the

false-positive rate of our three-way thresholding procedure.

We hypothesized that V is approximately equal to the total number of interactions

labeled as differential when applying 3DeFDR-5C to a set of biological samples with no

true differential loops. We defined our null dataset as a set of samples that are repli-

cates of a single cellular condition but are assigned a random set of labels matching

conditions T. Our key assumption in formulating this approach is that that the false-

positive rate (FPR) of calls on the null dataset (FPRnull) is approximately equivalent to
that of the experimental dataset (FPRexp), such that FPRnull ≈ FPRexp. We computed and
controlled an empirical false discovery rate (eFDR) as in Eq. 1:
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eFDR ¼ nnull
nexp

≈
V
R

ð1Þ

where nexp is the total number of interactions classified as significantly differential for a

particular looping class using the experimental conditions T and nnull is the total num-

ber of interactions classified as significantly differential in the null dataset, which ap-

proximates FPRexp.

It is often cost prohibitive to generate six biological replicates of 5C data for each

condition. Therefore, we generated 5C replicate simulations to populate the null sam-

ple set. We simulated 5C replicates of the same condition at the level of fragment-

fragment ligation counts after conditional quantile normalization. Our rationale for this

decision was that it would allow us to omit library complexity, batch effect, and se-

quencing depth terms in our count generating models. To construct our simulation

generating model, we first computed the sample mean and sample variance for every

interaction in every condition (Equations 2 and 3):

μt;r;i; j ¼
Pnt

s¼1C
0
ts;r;i; j

nt
ð2Þ

σ2t;r;i; j ¼
Pnt

s¼1ðC
0
ts;r;i; j−μts;r;i; jÞ

2

nt−1
ð3Þ

where nt is the number of replicates of condition t and C
0
ts;r;i; j is the conditional quan-

tile normalized 5C counts of interaction (t,r,i,j) in the sth replicate of condition t for

every ith and jth fragment ligation in genomic region r.

Most genomics experiments suffer from poor parameter estimation due to the low

number of replicates that are financially and logistically feasible to generate for every

biological condition. To improve parameter estimates, we modeled the mean-variance

relationship (MVR) between μt,r,i,j and σ2t,r,i,j by pooling all interactions at similar inter-

action distances (Fig. 2). We stratified quantile normalized counts C
0
ts;r;i; j for all regions

by their linear genomic interaction distance using a dynamic size window (Fig. 2a). For

distance regime 1 (0–150 kb), we stratified the interactions into fine-grained, 12-kb-

sized sliding windows with a 4-kb step. For distance regime 2 (151–600 kb), we strati-

fied the interactions into 24-kb-sized sliding windows with an 8-kb step. For distance

regime 3 (601–1000 kb), we stratified the interactions into coarse-grained, 60-kb-sized

sliding windows with a 24-kb step. We found that the variance was greater than the

mean across all genomic distance scales, indicating that 5C counts data are overdis-

persed (Fig. 2). For each window in each distance regime, we modeled the MVR by fit-

ting the function (Equation 4):

σ̂2t;r;i; j ¼ At;wμ
2
t;r;i; j þ μt;r;i; j ð4Þ

to all μt,r,i,j and σ2t,r,i,j to find the overdispersion parameter, At,w, at each distance scale

(detailed in the “Methods” section). We found that At,w also varied as a function of
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distance and was unique to each cell type (Fig. 2). Together, these data demonstrate

that 5C counts are overdispersed and that the overdispersion parameter varies as a

function of distance and cellular state.

To generate simulated 5C libraries, we weighted the predicted variance σ̂2t;r;i; j against

the original observed variance σ2t,r,i,j to generate a final weighted variance σ2t;r;i; j for

each interaction at each distance scale as in Equation 5 (detailed in the “Methods”

section):

Fig. 2 5C counts are overdispersed and their mean-variance relationship varies as a function of linear
genomic distance and cellular condition. a Raw 5C contacts are stratified by genomic distance prior to
characterization of their mean-variance relationship. In each of our three regimes, the width of the
stratification windows is determined using a different binning scheme. b The coefficient of variation for raw
5C counts is plotted against the median genomic interaction distance for each sliding window. Each
window captures counts from all genomic regions in the dataset in the ES-2i condition. c The dispersion
parameter, A, for each distance scale window (short horizontal lines) is computed by fitting sample means
and variances to the function σ2 = A*μ2 + μ. Dispersion versus distance scale trends (solid smooth lines)
were generated by Loess smoothing. d Mean-variance models for representative genomic distance
windows from all three distance regimes. Fits of the Poisson mean-variance relationship (σ2 = μ) and the
negative binomial mean-variance relationship (σ2 = A*μ2 + μ) are shown with their corresponding R2

goodness of fit values
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�σ2t;r;i; j ¼ ασ̂2t;r;i; j þ βσ2t;r;i; j ð5Þ

We used α = β = 0.5 to achieve simulated 5C counts with pairwise correlations on par

with that of real replicates while improving the quality of our variance estimate with

the predicted contribution (Additional file 4: Table S3). Finally, we parameterized the

negative binomial model for each C′t,r,i,j interaction and generated simulated counts

from our models for each (t,r,i,j) interaction (Equation 6):

C
0sim
t;r;i; j ∼ NBðμt;r;i; j; �σ2

t;r;i; jÞ ð6Þ

We created simulated replicates by filling in a simulated counts value for each (t, r, i, j)

interaction with a random variable drawn from the negative binomial distribution param-

eterized by μt,r,i,j and �σ2t;r;i; j . We then subjected the simulated 5C libraries, C
0sim
t;r , to the

same matrix balancing, binning, expected normalization, and modeling as the real 5C li-

braries (see the “Methods” section). Simulated 5C counts were highly similar to real 5C

data in a qualitative comparison (Fig. 3a–d, Additional file 2: Fig. S2). Moreover, for the

final predicted variance estimates (Equation 5 weighted at α = β = 0.5), our simulated 5C

libraries exhibit Spearman’s correlations within and between conditions that are nearly

equivalent to real replicates (Fig. 3). Together, these data show that 5C libraries can be

simulated with a negative binomial distribution parameterized with an overdispersed

distance-specific MVR.

We next used simulated IS matrices (Fig. 4a) to compute an empirical FDR (eFDR)

estimate for our looping classes across a sweep of IS difference thresholds applied to

both real (ISts;r;k;l) and simulated (ISsimts;r;k;l) values. For each loop classification, we com-

puted eFDR estimates across a range of difference threshold values d, acquiring a differ-

ence threshold-to-eFDR mapping for each class, eFDRd, h, as in Equation 7:

eFDRd;h ¼
card r; k; lð Þ∈hdnull

� �� �
card r; k; lð Þ∈hdexp

n o� � ð7Þ

where hdnull represents the set of interactions assigned to differential class h in the simu-

lated null dataset at difference threshold d and hdexp represents the set of interactions

assigned to the same class in the real experimental dataset at the same difference

threshold d. We selected our final eFDR threshold τ as 2% (Figs. 4 and 5). We performed

this eFDR controlling procedure for every differential looping class across our three cellu-

lar states to identify significantly differential bin-bin pairs (Fig. 4). We then clustered sig-

nificantly differential bin-bin pairs of a similar looping class by spatial adjacency (see the

“Methods” section); the end result was 108 constitutive, 12 ES-2i only, 62 NPC only, 3 ES-

2i and ES-Serum, and 4 ES-Serum and NPC looping clusters (Fig. 4). The 3DeFDR-5C al-

gorithm is designed so that the user can tune the final looping classifications to a pre-

determined target eFDR.

To evaluate the performance of the 3DeFDR-5C pipeline, we implemented two add-

itional methods for classifying differential looping interactions: ANOVA-BH and

3DLRT-BH (Additional file 2: Fig. S3). These methods use ANOVA and our newly
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formulated likelihood ratio test (3DLRT), respectively, to assign a differential looping p

value to every bin-bin pair in an experimental dataset (detailed in the “Methods” sec-

tion). In both approaches, output p values are then corrected for multiple testing using

the Benjamini-Hochberg step-up procedure. When we compared ANOVA and 3DLRT

benchmarking tests to 3DeFDR-5C, we found that the three different methods had dif-

ferent optimal FDR thresholds for identifying differential loops (Supplementary Figures

4–6, 8–10), with 3DeFDR-5C identifying the known, previously reported looping inter-

actions at significantly lower FDR estimates than the other two approaches (Fig. 5).

Thus, 3DeFDR-5C can identify known cell type-specific looping interactions with a

Fig. 3 Simulated 5C datasets exhibit strong similarity to experimental 5C datasets. a, b Heatmaps of relative
5C interaction frequency in the genomic regions surrounding the a Klf4 and b Olig1/2 genes are shown for
simulations and real experimental data. c, d Heatmaps of interaction scores in the genomic regions
surrounding the c Klf4 and d Olig1/2 genes are shown for simulations and real experimental data. e
Matrices of pairwise Spearman’s correlations between real and simulated 5C replicates after conditional
quantile normalization (see the “Methods” section)
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lower estimated false discovery rate than ANOVA and 3DLRT benchmarking tests

under the assumptions of our model.

To further understand the dynamic loops called by 3DeFDR-5C, we also compared

them to chromatin modifications on the 1-D genome as well as to the performance of

Fig. 4 Application of 3DeFDR-5C to find cell type-specific looping interactions across three cellular states. a
Heatmaps representing binned, matrix balanced 5C counts (Observed) around a known looping interaction
between the Olig1 gene and an NPC-specific enhancer (chr16:91,135,612-91,330,612). Observed counts are
divided by the computed local expected signal to obtain background-normalized counts (Observed/
Expected). These counts are fitted with a logistic distribution and the resulting p-values are transformed
into interaction scores, where interaction score = − 10*log2(p value). b Interaction scores are thresholded to
isolate contacts that are differentially looping across cellular conditions and whose signal meets a baseline
requirement for significance. This thresholding procedure is applied to both real and simulated null
replicate sets to compute an eFDR estimate. The dynamic thresholding procedure is applied with increasing
stringency until a user-specified target false discovery rate is reached. c Loop classifications obtained with
3DeFDR-5C in real (top) and simulated null (bottom) replicate sets shown in an interaction scatterplot
representation. d, e Heatmap of final loop classifications at d individual bin-bin pairs and e classified
looping clusters after applying 3DeFDR-5C at a threshold of 2%. f UpsetR scalable Venn diagrams for
differential looping clusters called by 3DeFDR-5C at a target eFDR of 2%
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the leading non-specific differential interaction caller built for Hi-C data. We observed

that classes of differential loops identified by 3DeFDR-5C at an FDR of 2% were

strongly enriched for genes and enhancers characteristic of cell types matching their

differential loop class (Fig. 5c, Additional file 2: Figs. S7, S11). Moreover, we observed

that convergently and divergently oriented CTCF motifs were over- and under-

enriched, respectively, at the base of loops identified by 3DeFDR-5C (Fig. 5). Together,

these data indicate that 3DeFDR-5C calls differential loops that exhibit the known hall-

marks of cell type-specific looping interactions.

Finally, we formulated 3DeFDR-HiC to identify cell type-specific loops genome-wide

in Hi-C data. To develop 3DeFDR-HiC, we relied on ultra-high-resolution Hi-C data

from mouse ES cells and ES-derived NPCs [61]. We first identified loops genome-wide

Fig. 5 Dynamic 3D chromatin looping interactions identified using 3DeFDR-5C, 3DLRT, and ANOVA. a
Reference interaction score heatmaps for two sample loci. b Loop classification results achieved with each
differential looping detection method at a target false discovery rate (FDR) of 2%. c Enrichment of cell-type
specific markers in loops classified as NPC or ES-2i & ES-serum for each of the three methods at a target
FDR of 2%. d Log fold-change in percent CTCF orientation among loops classified as constitutive, ES-2i &
ES-serum, or NPC, over percent CTCF orientation among loops classified as background
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Fig. 6 (See legend on next page.)
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in each cell type individually (see the “Methods” section, Fig. 6a, b). To identify which

of the identified loops were ES- or NPC-specific, we formulated a negative binomial

model parameterized by (i) the mean count per pixel across replicates for every bio-

logical condition, (ii) a distance-dependent scaling factor to normalize for sequencing

depth (Additional file 2: Fig. S14), (iii) bias factors for every row in the raw Hi-C

matrix, and (iv) an estimated dispersion per pixel across replicates for every biological

condition (see the “Methods” section). We estimated the dispersion of loops at every

10-kb increment of genomic distance via a distance-dispersion-relationship (DDR) (see

the “Methods” section, Fig. 6). After fitting the parameters of our model to the data, we

performed a likelihood ratio test to obtain p values against the null hypothesis that each

interaction in a loop was not differential and applied the Benjamini-Hochberg step-up

procedure to correct these p values for multiple testing. At an FDR threshold of 1%

and a loop cluster size threshold of 3 (see the “Methods” section), we identified 818 ES-

specific loops and 1435 NPC-specific loops (Fig. 6), including the ES-specific loop con-

necting the Sox2 gene to its ES-specific enhancer (box 1), and the longer-range ES-

specific, NPC-specific, and constitutive loops around Sox2 at this locus (box 2, box 3)

(Fig. 6 b, e). Thus, we can identify cell type-specific looping interactions genome-wide

in Hi-C data with 3DeFDR-HiC.

Our 3DeFDR-HiC method makes three critical assumptions: (1) the use of a negative

binomial distribution is necessary to account for overdispersion in Hi-C data, (2) the

model needs to account for the DDR, and (3) pooling dispersion or variance estimates

is necessary to achieve good performance in the face of small numbers of available rep-

licates. To test these three assumptions, we benchmarked the performance of 3DeFDR-

HiC on simulated data against three alternative models that each dropped one of our

three assumptions. These alternative models included a Poisson model (which assumes

mean is equal to variance with no overdispersion), a “global negative binomial” model

(which does not account for the DDR), and a “sample variance parameterized negative

binomial” model (which does not pool dispersion or variance estimates and uses a sam-

ple variance computed for each pixel across replicates instead) (see the “Methods” sec-

tion). We provide the intuition for how each of the three models compares to our

3DeFDR-HiC method in Additional file 2: Fig. S13A. Our inspection of distributions of

p values called on true null simulations revealed that the Poisson model failed to con-

trol type I error (Additional file 2: Fig. S13B). This failure to control type I error was

also reflected in a failure to control FDR in simulations containing truly differential

(See figure on previous page.)
Fig. 6 Cell-type specific looping interactions identified from Hi-C using 3DeFDR-HiC. a Reference heatmaps
of relative Hi-C interaction frequency (Observed) for the Sox2 region and two zoom-in views of loops
involving the Sox2 gene. Boxes 1, 2, and 3 highlight areas of differential looping. b Reference interaction
score heatmaps of the same genomic regions shown in a. c Distance-dispersion relationship in the ES
condition in the Bonev et al. Hi-C dataset. The orange dots show the estimated negative binomial
dispersion parameter at each distance scale. The purple line represents a LOWESS smoothing of the orange
points. The red dashed line shows the effective dispersion of the Poisson distribution for comparison. d MA
plot of the differential loop analysis comparing the ES and NPC conditions in the Bonev et al. Hi-C dataset.
The x- and y-axes represent the average log interaction frequency and the log fold change across cell types,
respectively, computed on observed Hi-C counts normalized for both locus specific biases and sequencing
depth differences. The densities of non-loop, constitutive, and differential (called by our method at an FDR
threshold of 1%) pixels are shown in different colors as indicated in the legend. e Heatmaps of final loop
cluster classifications for each genomic region called by 3DeFDR-HiC at an FDR threshold of 1%
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loops (Additional file 2: Fig. S13C). Next, we assessed the performance of the different

approaches using receiver operator characteristic (ROC) curves, revealing that the

“sample variance parameterized negative binomial” model resulted in inferior cell type-

specific loop classification performance compared to 3DeFDR-HiC, which uses pooled

dispersion estimates (Additional file 2: Fig. S13D). Finally, we assessed the bias of low p

values in simulated null datasets with respect to distance (Additional file 2: Fig. S13E),

revealing that the “global negative binomial” model is overly conservative at short dis-

tances, where it overestimates dispersion, and overly permissive at long distances,

where it underestimates dispersion. Altogether, these results were used to formulate

and justify the assumptions upon which we built our 3DeFDR-HiC model.

Finally, to benchmark 3DeFDR-HiC’s performance, we applied diffHic [45] to the

same Hi-C data. When comparing the two methods, we held constant either the FDR

threshold or the total number of significant differential loops. In both the ‘matched

FDR’ and ‘matched loop number’ benchmarking scenarios, we observed that diffHic

called cell type-specific interactions throughout Hi-C data irrespective of whether or

not the interactions were bona fide loops (Additional file 2: Fig. S12A,C). We also created

simulated Hi-C maps containing pre-defined cell type dynamic looping interactions with

a range of interaction strength effect sizes (see the “Methods” section, Fig. 7). 3DeFDR-

HiC markedly outperformed diffHic in the sensitivity and specificity of differential loops

called on our simulated datasets (Additional file 2: Fig. S12D). As expected, running

3DeFDR-HiC on simulations with stronger looping fold changes resulted in a higher

number of differential loops called (Fig. 7). 3DeFDR-HiC exhibits strong sensitivity and

specificity of loop detection which increases with increasing interaction frequency effect

size (Fig. 7), as well as consistently strong FDR control at every tested interaction fre-

quency effect size (Fig. 7). Our simulations can be used to perform power calculations at a

variety of effect sizes (Fig. 7), providing estimates of the proportion of uncalled truly dif-

ferential loops across a range of differential effect sizes. Together, these data characterize

the performance of 3DeFDR-HiC and suggest that it outperforms the leading Hi-C inter-

action caller diffHiC.

Conclusion
Since the invention of 5C and Hi-C technologies, the field has been in need of statis-

tical methods and computational tools for identifying differential long-range looping in-

teractions among biological conditions. To date, there is a severe lack of differential

loop calling methods available for analysis of 5C data by the scientific community.

Moreover, although a small number of “general differential interaction identification”

methods have been published for Hi-C data, differential loop calling largely remains an

open question because (1) currently available tools do not account for local distance-

dependent background signal and TAD/subTAD/compartment structure to identify

changes specifically at loops and (2) Hi-C datasets with the resolution necessary for

looping interaction analysis have only very recently become available. We describe two

variants of our method: 3DeFDR-5C, our original approach designed for identifying cell

type-specific loops from 5C data, and 3DeFDR-HiC, a simplified and parallelized vari-

ant fast enough to identify differential loops in genome-wide Hi-C datasets.

It is important to acknowledge potential limitations in our methods. 3DeFDR-5C and

3DeFDR-HiC cannot in their current form detect global changes in looping due to a
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biological perturbation such as nuclear volume change which would lead to global shift

in signal at a specific distance scale. We have created our code in a way that allows

users to alter bias vectors and scaling parameters to account for their biological ques-

tion. In cases of global changes, the normalization and correction of samples together

would not be preferred. We also acknowledge that our work here represents one of the

first in-depth studies of the problem of variance estimation in Hi-C data. To further en-

hance differential loop calling performance, newer modeling approaches will be needed

to improve upon our dispersion estimates in the future. In an ideal scenario, Hi-C data

for every condition would be obtained with a high number of biological replicates, thus

facilitating the ability to estimate variance on a per-pixel basis and account for the local

TAD/subTAD and compartment folding patterns that influence mean and variance es-

timates at each pixel. Here, we pool interaction frequencies by distance to create a

Fig. 7 Characterization of performance of 3DeFDR-HiC method using simulated Hi-C data. a Heatmaps
showing a single example loop in simulations generated using varying effect sizes. The difference between
any heatmap and the baseline loop strength shown in the far-left panel becomes more pronounced as
effect size increases. b MA plots resulting from analysis of simulations of two artificial conditions (“A” and
“B”) generated using varying effect sizes, with red and blue points representing interactions called as
differential by our method at a false discovery rate of 1%. No interactions are called differential when no
loops are truly differential (effect size + 0%). The number of interactions called as differential increases with
increasing effect size, though the true proportion of differential interactions remains fixed at 40% in the
simulations shown here. c Receiver operating characteristic (ROC) curves showing performance of our
method on simulations generated using varying effect sizes. Like in b, the true proportion of differential
interactions remains fixed at 40%. The x-axis shows the false-positive rate (FPR), or one minus the specificity.
The y-axis shows the true positive rate (TPR), or sensitivity. The area under the receiver operating
characteristic curve (AUROC) for each curve is shown in parentheses in the legend. d False discovery rate
(FDR) control curves showing FDR control characteristics of our method on simulations generated using
varying effect sizes, colored as in (C). The x-axis shows a range of FDR thresholds, while the y-axis shows the
actual FDR we observe in the differential calls made by our method at that FDR threshold. Methods that
control FDR should stay below the dashed gray line. All FDR control curves should show an FDR of 60% at
an FDR threshold of 100%, since only 40% of loops in each simulation are truly differential. e Power curves
showing the proportion of truly differential interactions called differential by our method (y-axis) as a
function of the FDR threshold used for thresholding (x-axis) in simulations generated using varying effect
sizes, colored as in c
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DDR, but future studies may reveal that dispersion is controlled by additional factors

beyond distance and biological condition.

In this study, we analyze Hi-C datasets using a 10-kb bin resolution. In

principle, our implementation of 3DeFDR-HiC is fast enough to call differential

loops using smaller bin sizes; however, we have chosen to present results using

10 kb bins due to the scarcity of Hi-C datasets with sufficient read depth to reli-

ably detect loops at bin sizes smaller than 10 kb. We expect that assessing the

< 10-kb bin matrix resolution performance of 3DeFDR-HiC and other differential

loop calling models will become an important area for future work as more

ultra-high-resolution Hi-C datasets become available.

Our analyses thus far have suggested that variance estimation is not as critical for dif-

ferential loop calling genome-wide in “C” data as it is for differential gene expression

analyses in RNA-seq data. Our hypothesis for this discrepancy is that RNA-seq data

has a much higher dynamic range of counts than “C” data and that the dispersion esti-

mates matter most for modeling very highly expressed genes. Consistent with this idea,

we do indeed observe that both of our methods (3DeFDR-5C and 3DeFDR-HiC) allow

for more sensitive and specific loop detection in the case of ultra-short-range loops

where the interaction frequencies have the highest mean. The advantage is, however,

small compared to using per-pixel sample variances or a zero-dispersion Poisson

model, and future studies will unravel how improved sensitivity/specificity in loop call-

ing will aid in biological discovery in high-resolution Hi-C data. A systematic compari-

son of all differential looping models—including a more quantitative performance

assessment for 5C differential loop calling—remains an important area for future work.

In conclusion, we provide 3DeFDR as a new statistical framework and computational

tool for detecting and classifying differential looping interactions in high-resolution,

multi-condition 5C and Hi-C datasets. We note that the performance of 3DeFDR is

highly dependent on the quality of the input dataset and how effectively the raw se-

quencing counts of detected interactions have been processed to reduce batch effects,

correct for bias, and account for distance-dependent and TAD/subTAD background

signal. We provide 3DeFDR as a modular coding package that the user may integrate

into their own 5C or Hi-C analysis pipeline. For the convenience of users, this package

includes companion visualization tools for assessing 3DeFDR results to determine how

effectively counts have been modeled for simulation, viewing differential loop calls as

color-coded clusters, and computing the enrichment of classical epigenetic marks

within classes of called loops.

Methods
5C data

5C libraries generated with a single alternating primer design [32] in embryonic stem (ES)

cells cultured in 2i media (ES-2i), ES cells cultured in serum/LIF (ES-Serum), and primary.

Hi-C data

Hi-C libraries were downloaded from GEO (Additional file 6: Table S5). Briefly, we

used all raw Hi-C sequencing reads from the ES_1, ES_3, NPC_1, and NPC_2 replicates

(representing the ES and NPC conditions), keeping the replicates separate.
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5C data processing pipeline

Overview

Raw 5C counts were subjected to our previously published 5C count modeling methods

[32, 60, 62–65]. The processing steps described briefly below ultimately resulted in the

conversion of fragment-level, raw count matrices to a bias- and expected background-

corrected contact matrices of interaction scores. Pre-processing steps were performed

prior to the post-processing steps of matrix balancing, binning, mean-variance relation-

ship modeling, and 5C replicate simulation. Binning and all subsequent normalization

and modeling steps were performed on both experimental and simulated 5C replicates.

Data structure and pre-processing

We assembled sequencing counts from each 5C experiment ts and each genomic region

r into an nr × nr raw contact matrix, Cts;r , where nr represents the total number of Hin-

dIII restriction fragments in each region r, t ∈ {ES2i, ESserum, NPC} represents a cellu-

lar condition, and s ∈ {1, 2} represents a biological replicate of the cellular condition t.

Thus, Cts;r;i; j is the number of reads that represent contacts between the ith and jth

fragments in region r, where i ∈ {1, 2, 3,…, nr} and j ∈ {1, 2, 3,…, nr}. Raw contact matri-

ces were then normalized as described [32]. Briefly, the raw contact matrices Cts;r were

normalized for replicate biases due to batch effects, sequencing depth differences, and

library complexity differences by conditional quantile normalization to create a normal-

ized contact matrix C
0
ts;r .

Matrix balancing

Each normalized contact matrix C
0
ts;r was then matrix balanced with joint express as

described [32, 49] to correct for differences in fragment-specific biases, such as GC

content, fragment length, and 5C primer-specific efficiency at each primer in region r

to create a balanced contact matrix C
0
ts;r .

Contact matrix binning

Balanced contact matrices C
0
ts;r were converted to binned interaction frequency matri-

ces by binning at regular 4-kb intervals and smoothing at 16-kb intervals as described

in [32, 49, 62]. The smoothing was performed because we developed the 3DeFDR-5C

method on older 5C data from an alternating 5C primer design. 5C libraries made with

double alternating designs do not require this smoothing step [64]. The resulting

binned interaction frequency matrices Bts;r have mr by mr elements where mr is the

total number of bins in region r. Bts;r;k;l represents the arithmetic mean contact fre-

quency between fragments in the kth and lth bins in genomic region r as recorded in

replicate s under condition t. Binned interaction frequency matrices have reduced

spatial noise relative to the original fragment-level matrices while preserving the under-

lying signal.

Distance dependence normalization

Following binning, expected values for each interaction in the binned interaction fre-

quency matrices were computed using a modification of the local donut expected de-

scribed by Aiden and colleagues that accounts for the local TAD/subTAD structure
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and the global distance-dependent background signal [11, 32, 49]. The binned inter-

action frequency values Bts;r;k;l (Observed) were corrected by the maximum of expected

donut values DEts;r;k;l and expected lower left values LLEts;r;k;l to yield contact enrich-

ments (Observed/Expected, or Obs/Exp) normalized for distance-dependent 5C count

signal and local chromatin domain structure as detailed previously [32].

Probabilistic model fitting

As detailed previously [32], contact enrichment values (Obs/Exp) were modeled within

each region by parameterizing a log-logistic distribution using maximum likelihood es-

timation, resulting in matrices of right-tailed p values Pts;r . P values were computed for

each 5C genomic region separately.

Removal of interactions below distance limit

Interactions occurring between bins within 20 kb of each other on the linear chromatin

fiber were removed from consideration and not included in further processing.

Interaction scores and z-scores

The final step of the post-processing pipeline is the conversion of modeled p

values to interaction scores. We use ISts;r to refer to the matrix of interaction

scores for region r and replicate s in condition t. For 3DeFDR-5C, p values were

transformed to an interaction score of −10 × log2(p value). For benchmarking ap-

proaches, ANOVA, and 3DLRT (detailed below), p values were transformed to

both an interaction score of −10 × log2(pvalue) as well as a z-score computed using

the standard normal quantile function (the inverse of the standard normal cumula-

tive distribution function) (Equations 8 and 9):

Φ zð Þ ¼ 1ffiffiffiffiffiffi
2π

p
Z z

−∞
e−

x2
2 dx ð8Þ

Zts;r;k;l ¼ Φ−1 1−Pts;r;k;l
� � ð9Þ

where Pts;r;k;l is the right-tail p value computed for the interaction between bins k and l

in genomic region r as recorded in biological replicate s under condition t. We imple-

mented the conversion of p values to z-scores using the stats.norm.isf function in the

scipy Python library.

Hi-C data processing pipeline

Raw Hi-C data were aligned to the mm9 genome using bowtie2 (global parameters:

--very-sensitive -L 30 --score-min L,-0.6,-0.2 --end-to-end --reorder; local parameters:

--very-sensitive -L 20 --score-min L,-0.6,-0.2 --end-to-end --reorder) through the HiC-

Pro software. Unmapped reads, non-uniquely mapped reads, and PCR duplicates were

filtered out, and uniquely aligned reads were paired. Cis contact matrices were assem-

bled by binning paired reads into uniform 10 kb bins.
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3DeFDR-5C

Overview

3DeFDR-5C is designed to identify differential looping interactions across a set of 5C

experiments containing either two or three cellular conditions with at least two repli-

cates each. In this section, we describe the application of 3DeFDR-5C to three cellular

conditions, referring to a set of three conditions T = {A, B,C} and of six replicates as

S = {A1,A2, B1, B2,C1,C2}.

Differential loop categories

In the 3DeFDR-5C framework, the set of possible classes of differential looping in-

teractions is defined as all nonempty proper subsets H of the input condition set T

(Equation 10):

H ¼ Af g; Bf g; Cf g; A;Bf g; A;Cf g; B;Cf gf g ð10Þ

Interactions assigned to single-condition classes, e.g., {A}, {B}, or {C}, are considered

to be interacting significantly higher in replicates of that specific condition than in

those of the other two conditions (Additional file 2: Fig. S1E and Additional file 3:

Table S2). Interactions assigned to dual condition classes, e.g., {A, B}, {A,C}, or {B,C},

are considered to be interacting significantly higher in replicates of the two specific

conditions than in the remaining single condition (i.e., C, B, and A, respectively). If

interaction scores for an interaction are sufficiently high in all conditions, that inter-

action is interpreted to be non-differential and labeled as a constitutive looping inter-

action. If interaction scores are sufficiently low in all replicates of all conditions, the

interaction is not called a looping interaction; therefore, it is not tested for differential

looping signal (Additional file 2: Fig. S1D). Points with very low interaction scores in all

replicates are assigned to a background class, representing interactions that are very

unlikely to be loops (Additional file 2: Fig. S1C).

Computing empirical false discovery rate

3DeFDR-5C controls an empirically estimated false discovery rate (eFDR) to classify

loops as differentially interacting across cellular condition set T. By definition, FDR ¼ E

½VR� where V is the number of false positives among tests declared significant and R is

the total number of tests declared significant. R is computed as the total number of

pixels called as significantly differential in any differential class in H (Equation 10). By

contrast, V is not trivially computed and requires a model for estimating what propor-

tion of looping interactions in each class in H are false positives.

We hypothesized that V is approximately equal to the total number of interactions

incorrectly labeled as differential when applying 3DeFDR-5C (holding all of its thresh-

olds fixed) to a set of biological samples known to have no truly differential loops (i.e.,

a null biological sample set). We defined our null data set as a set of samples that are

all replicates of a single cellular condition but are assigned a set of labels matching the

different conditions in T. The key assumption of this approach is that that the false-

positive rate (FPR) of calls on the null dataset (FPRnull) is approximately equivalent to
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that of the real experimental dataset (FPRexp), such that FPRnull ≈ FPRexp. We computed

and controlled an empirical false discovery rate (eFDR) (Equation 11):

eFDR ¼ nnull
nexp

≈
V
R

ð11Þ

where nexp is the total number of interactions classified as significantly differential in

the real experimental dataset and nnull is the total number of interactions classified as

significantly differential in the null dataset.

We computed a piecewise interaction score thresholding scheme for each looping

interaction class in the set of possible differential classifications H. To classify dynamic

loops, 3DeFDR-5C applies a thresholding scheme based on the difference in interaction

scores between conditions (Fig. 1). Using a sweep of IS difference thresholds d (see or-

ange lines in Fig. 1), 3DeFDR-5C assigns every pixel in a 5C data set either to one of

the differential classes in H or to the background, constitutive, or “other” class (as de-

scribed above and below) and computes a class-specific eFDR for each differential loop-

ing interaction class h ∈H as (Equation 12):

eFDRd;h ≈
nd;hnull

nd;hexp

ð12Þ

where nd;hexp is the total number of interactions assigned to differential looping class h

in the real experimental dataset at difference threshold d and nd;hnull is the total number

of interactions assigned to differential looping class h in the simulated null dataset at

the same difference threshold d. 3DeFDR-5C adapts the distance threshold for each dif-

ferential looping class to maintain a user-specified target empirical FDR threshold τ

across all differential looping classes. For each looping interaction class h, we deter-

mined the distance threshold d at which eFDRd, h is closest to τ while remaining less

than τ. Thus, each differential looping class h will have a unique difference threshold d

to reach the study-specific target eFDR threshold τ. Constitutive looping pixels are

identified as those that are strong in all conditions and are not sufficiently differential

to admit assignment to one of the differential classes (Additional File 3: Table S2).

“Other” or “uncalled” pixels include those that pass the looping threshold but do not

meet the requirements of any of the other classes (Additional File 3: Table S2). Overall,

3DeFDR-5C employs eFDR estimate control to guide the placement of IS thresholds to

call differential looping classes.

We did not have access to an experimental dataset with enough replicates of the

same cellular condition to create a null replicate set directly from real 5C libraries. To

avoid the high costs and labor required to run additional experiments, we modeled and

created simulations of our existing experimental replicates to create additional simu-

lated replicates. We constructed a null dataset from six simulated replicates (Snull =

{A1sim,A2sim,A3sim,A4sim,A5sim,A6sim}) all based on the same biological condition

(Tnull = {A,A,A})).
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Modeling and simulation of preprocessed replicates

We simulated 5C replicates of the same condition at the level of fragment-level counts

after conditional quantile normalization. Our rationale for simulating quantile normal-

ized counts rather than raw counts was that doing so would allow us to omit library

complexity, batch effect, and sequencing depth terms in our count-generating models.

We simulated fragment-resolution counts that have been quantile normalized but not

balanced (resulting in simulated matrices comparable to C
0
ts;r ) by parameterizing a dif-

ferent negative binomial distribution for each interaction as described below and then

drawing a random variable from this distribution.

To begin constructing our simulation-generating model, we computed the sample

mean and sample variance of the preprocessed sample counts of a single interaction

across replicates of the same condition as in Equations 13 and 14:

μt;r;i; j ¼
Pnt

s¼1C
0
ts;r;i; j

nt
ð13Þ

σ2
t;r;i; j ¼

Pnt
s¼1 C

0
ts;r;i; j � μts;r;i; j

� �2
nt−1

ð14Þ

where nt is the number of replicates of condition t and C
0
ts;r;i; j is the conditional

quantile normalized 5C count value for the interaction between the ith and jth bins of

region r in the sth replicate of condition t.

Most genomics experiments suffer from poor parameter estimation due to the

low number of replicates that are financially and logistically feasible to generate for

every biological condition. We did not use μt,r,i,j and σ2t;r;i; j , computed from only

nt = 2 replicates, to directly parameterize the negative binomial (NB) counts models

for each quantile normalized interaction count C
0
ts;r;i; j . Instead, we modeled the

mean-variance relationship (MVR) between μt,r,i,j and σ2t;r;i; j , thereby leveraging the

high-dimensional nature of our data set to improve our variance estimates. We

stratified quantile normalized counts, C
0
ts;r;i; j , for all regions by their linear genomic

distance using overlapping stratification windows of different sizes depending on

genomic distance. For distance regime 1 (0–150 kb), we stratified the interactions

using fine-grained, 12-kb-sized sliding windows with a 4-kb step. For distance re-

gime 2 (151–600 kb), we stratified the interactions into 24-kb-sized sliding windows

with an 8-kb step. For distance regime 3 (601–1000 kb), we stratified the interac-

tions into coarse-grained, 60-kb-sized sliding windows with a 24-kb step. For each

window w in each distance regime, we modeled the MVR for each condition t by

fitting the function σ2 = At,wμ
2 + μ to the μt,r,i,j and σ2t;r;i; j values for all regions r

and for all bin-bin pairs i, j whose linear genomic separation distance fell in win-

dow w. Prior to estimation of At,w, interactions with mean counts of one or less,

or more than 2.5 standard deviations above the mean of mean counts for interac-

tions in bin w were removed. The dispersion parameters, At,w, were then plotted as

a function of genomic distance, and LOWESS smoothing with a smoothing fraction

of 0.5 was used to compute the final dispersion estimates, At;w. The predicted sam-
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ple variance σ̂2t;r;i; j for each individual interaction was then computed using the

LOWESS-smoothed dispersion estimate At;w appropriate for the window w corre-

sponding to the interaction distance |i − j| as in Equation 15:

σ̂2
t;r;i; j ¼ At;wμ2t;r;i; j þ μt;r;i; j ð15Þ

We weighted the predicted variance value σ̂2t;r;i; j against the original observed variance

of the interaction σ2t;r;i; j to generate a final weighted variance σ2t;r;i; j for each interaction

as in Equation 16:

σ2
t;r;i; j ¼ ασ̂2t;r;i; j þ βσ2t;r;i; j ð16Þ

We chose to use α = β = 0.5 to achieve pairwise correlations on par with that of

real replicates while improving the quality of our variance estimate with the pre-

dicted contribution. As shown in Additional file 4: Table S3, increasing α led to

higher pairwise correlation between simulated replicates. Finally, we parameterized

a negative binomial distribution for each C′t,r,i,j interaction and generated simulated

counts C
0sim
t;r;i; j from it as in Equation 17:

C
0sim
t;r;i; j∼NBðμt;r;i; j; �σ2t;r;i; jÞ ð17Þ

Creating the null replicate set

Using the generative models described above, we created six simulated replicates of a

chosen biological condition t ∈ T. For our results, we chose to use the NPC condition

(which we will denote as condition A ∈ T), because this was the condition which

showed the highest dispersion between replicates (Fig. 2) and would therefore result in

the most conservative eFDR estimate. The simulated replicates that made up our null

replicate set are shown in Equation 18:

Ssim ¼ A1sim;A2sim;A3sim;A4sim;A5sim;A6simf g ð18Þ

Users of 3DeFDR-5C may choose whichever condition they like when generating the

null replicate set.

The simulated interaction counts C
0sim
t;r;i; j were then subjected to the matrix bal-

ancing, binning, modeling, and p value transformation steps described above.

3DeFDR-5C takes as input the simulated replicate interaction scores ISsimts;r and ex-

perimental replicate interaction scores ISts;r for each region r, replicate s, and

condition t.

Identification of the background interaction set

Prior to the identification of differential looping interactions, we created a back-

ground null interaction set consisting of all interactions for which the interaction
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scores ISts;r;k;l of all replicates of every condition were less than a background

threshold b as in Equation 19:

Background loops ¼ r; k; lð Þ : max
ts∈S

ISts;r;k;l
� �

< b

	 

ð19Þ

The exact threshold for background interactions that we used was b = − 10 ×

log2(0.8), corresponding to a p value threshold of 0.8. Interactions not placed in this set

were then passed on for further analysis for differential looping in the 3DeFDR-5C

pipeline.

Preliminary classification of differential looping interactions

As outlined in Additional file 2: Fig. S1, to ultimately be classified as differential, a loop

must pass thresholds for both baseline significance and IS difference across conditions.

Baseline significance filtering

To meet the criteria for differential looping for any differential classification h, an inter-

action must have ISts;r;k;l greater than a specific significance threshold g for all replicates

in at least one condition in T as in Additional file 2: Fig. S1D and Equation 20:

Significant loops ¼ r; k; lð Þ : max
t

min
s

ISts;r;k;l
� �h i

> g

	 

ð20Þ

The threshold for a significant looping interaction used in the results presented

in the main figures was g = − 10 × log2(0.165), corresponding to a p value threshold

of 0.165.

Thresholding interaction score differences across conditions

Starting with the subset of significant loops across conditions, we then set out to clas-

sify interactions according to how much their interaction scores changed across cellular

conditions (Additional file 2: Fig. S1E and Additional file 3: Table S2). For each inter-

action (r, k, l) in the set of significant loops (Equation 20), we computed the difference

in interaction score between each possible pair of replicates belonging to different con-

ditions. We then computed initial looping class assignments (Equation 3) across a

sweep of IS difference thresholds d as shown in Additional file 3: Table S2. Addition-

ally, in Additional file 3: Table S2, we provide the exact set of thresholds applied to ob-

tain each possible looping classification of a bin-bin pair in dataset capturing three

conditions.

In 3DeFDR-5C, loop classifications are determined using this thresholding approach

for each difference threshold across a sweep of all possible difference thresholds in a

given data set. These classifications are considered preliminary prior to the application

of the eFDR control procedure described in the next section.

Final loop classification via an adaptive eFDR control procedure

After obtaining preliminary classifications of each interaction across a sweep of IS dif-

ference thresholds, we determined each ISts;r;k;l interaction’s final classification via the
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application of a classification-specific eFDR control procedure. For each possible loop

classification h ∈H, we computed its eFDR for every tested difference threshold d, ac-

quiring a difference threshold-to-eFDR mapping for each class, eFDRd, h, as in Equation

5. We next applied the eFDR threshold τ to this mapping, identifying the difference

threshold d at which eFDRd, h is closest to but still less than τ, and report loop calls of

class h at this distance threshold. We perform the eFDR controlling procedure for every

differential looping class h ∈H, and the combined set of loop calls for each class consti-

tutes our final set of differential classified loops.

Additionally, eFDR estimates can be computed as an average over a user-specified

number, Nnull − sets, of null replicate sets as in Equation 21:

eFDRd;h ¼
1

Nnull−sets

XNnull−sets

m¼1
card r; k; lð Þ∈hdnull

� �� �
card r; k; lð Þ∈hdexp

n o� � ð21Þ

The numerator is now the average number of loops called as class h in the null data

sets at difference threshold d. The approach in Equation 21 can reduce variability in

eFDR estimates due to random differences between different simulation sets generated

from the same counts-generating model.

Benchmarking 3DeFDR on 5C

To benchmark the effectiveness of 3DeFDR-5C for loop calling, we implemented two

additional methods for classifying differential looping interactions: (1) we applied con-

ventional ANOVA and (2) we formulated a new likelihood ratio test, 3DLRT. Using

these methods, we assigned a differential looping (DL) p value to every interaction in

an experimental dataset. In both approaches, output p values were then corrected for

multiple testing using the Benjamini-Hochberg step-up procedure for controlling FDR.

Differential looping classifications were ultimately assigned using ANOVA and 3DLRT

as detailed below and described in Additional file 2: Fig. S3.

ANOVA

As a basic benchmark to compare to our more sophisticated methods, we applied

ANOVA directly to either the interaction scores ISts;r;k;l or the z-scores Zts;r;k;l of the

experimental replicate set. To account for the large number of interactions tested, we

corrected the resulting differential interaction p values for multiple testing by applying

the Benjamini-Hochberg (BH) step-up procedure. The resulting BH-FDR adjusted p

values were then thresholded according to a user-defined FDR to determine which in-

teractions are significantly differential.

It should be noted that ANOVA may not be particularly appropriate when applied to

the experimental design described in this paper. The interaction scores ISts;r;k;l are not

normally distributed, whereas ANOVA assumes that the data are normally distributed.

Unlike the interaction scores, the z-scores Zts;r;k;l are normally distributed with unit

variance under the null hypothesis of the statistical model we use to call loops. Despite

this, ANOVA attempts to independently re-estimate variance parameters for every

ISts;r;k;l or Zts;r;k;l interaction tested without sharing information across interactions.
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3DLRT

As an alternative method for identifying statistically significant differential interac-

tions, we developed a new likelihood ratio test (3DLRT). 3DLRT compares the

likelihood of the data assuming that the loop is not differentially interacting (null

model) to the likelihood of the data under the assumption that the loop is differ-

ential (alternative model). We parameterized each model with parameters that best

matched the underlying data under the constraints of that model. If the likelihood

of the observed data under the alternative model was significantly higher than that

under the null model, then we rejected the null hypothesis that the loop is not dif-

ferential between conditions.

We formulated 3DLRT using either the z-scores Zts;r;k;l (3DLRT-Z) or the interaction

scores ISts;r;k;l (3DLRT-IS) of the experimental replicate set. The derivation of 3DLRT

that uses IS as input (3DLRT-IS) is provided in additional supplementary discussion

below. In the 3DLRT-Z model, the z-scores are assumed to follow a unit-variance nor-

mal probability density function with a single looping effect size or shift parameter μ

(Equation 22):

f Z Z; μð Þ ¼ 1ffiffiffiffiffiffi
2π

p e−
Z−μð Þ2
2 ð22Þ

The test statistic for the likelihood ratio test based on the z-scores is shown as

Equation 23:

TLRT ¼ 2 log
max

μ̂A;μ̂B;μ̂C

Y
t∈T ;s∈S

f Z Zts ; μ̂tð Þ
h i

max
μ̂0

Y
t∈T ;s∈S

f Z Zts ; μ̂0ð Þ
h i ð23Þ

where under the null hypothesis TLRT should be asymptotically chi-square distrib-

uted with two degrees of freedom. The intuition behind our formulation of

3DLRT is included below in the “Detailed description of the 3DLRT-Z test”

section.

Finally, we assessed the significance of the test statistic by comparing it to the

chi-square distribution with degrees of freedom equal to the difference in the

number of free parameters in our two models. In our case, the alternative hy-

pothesis model has three parameters and the null hypothesis model has one, so

we have two degrees of freedom. We then adjusted chi-square p values for mul-

tiple testing by applying the Benjamini-Hochberg step-up procedure. The result-

ing BH-FDR adjusted p values were then thresholded according to the user-

defined target FDR to determine which interactions are significantly differential.

Significantly differential interactions were then assigned to differential looping

classes using the same logic as that used by 3DeFDR-5C (Additional file 2: Fig.

S3 and Additional file 3: Table S2).

Detailed description of the 3DLRT-Z test

Set-up and assumptions

The test statistic for 3DLRT-Z is shown in Equation 24:
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TLRT ¼ 2 log

Q
i f zi; μ̂1ið ÞQ
i f zi; μ̂0ið Þ ð24Þ

where f(x; μ) is the probability density function for the normal distribution, constrained

to unit variance and parameterized with a single looping effect size or shift parameter

μ, as specified in (Equations 22–23), μ̂0i is the appropriate shift parameter estimate for

zi under the null hypothesis, and μ̂1i is the appropriate shift parameter estimate for zi
under the alternate hypothesis.

The parameter estimates μ̂
*

0 and μ̂
*

1 are constrained by the specific choice of null and

alternate hypotheses. These parameters are chosen to maximize the likelihood of the

data under the null (Equation 25) and alternate hypothesis (Equation 26), respectively:

μ̂
*

0 ¼ argmax
μ*0

Y
i
f zi; μ0ið Þ; subject to null hypothesis constraints ð25Þ

μ̂
*

1 ¼ argmax
μ*1

Y
i
f zi; μ1ið Þ; subject to alternate hypothesis constraints ð26Þ

Applying this choice of μ̂
*

0 and μ̂
*

1 to the equation for the likelihood ratio test statistic

T above, we derive Equation 27:

T ¼ 2 log

max
μ*1

Y
i
f zi; μ1ið Þ

max
μ*0

Y
i
f zi; μ0ið Þ ð27Þ

Equation 27 can also be written as Equation 28:

T ¼ 2 log

max
μ*1

L z
* j μ*1

� �
max
μ*0

L z
* j μ*0

� � ð28Þ

where Lð z* j μ*1Þ is the total likelihood of the data z
*

given a mean parameter vector μ*1

under the alternate hypothesis (Equation 29):

L z
* j μ*1

� �
¼
Y

i
f zi; μ1ið Þ ð29Þ

and Lð z* j μ*0Þ is the total likelihood of the data z
*

given a mean parameter vector μ*0

under the null hypothesis (Equation 30):

L z
* j μ*0

� �
¼
Y

i
f zi; μ0ið Þ ð30Þ

The key difference between the two likelihood functions is that the constraints on μ*1

and μ*0 may be different, as dictated by the alternate and null hypotheses, respectively.
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The likelihood ratio test statistic TLRT should be asymptotically chi-square distributed

under the null hypothesis. The degrees of freedom in the chi-square distribution de-

pend on the constraints imposed by the null and alternate hypotheses. For example, in

our 3 conditions, 2 replicate per condition experimental design, the parameters include

(Equations 31 and 32):

μ̂
*

1 ¼ μ̂A; μ̂A; μ̂B; μ̂B; μ̂C ; μ̂C½ � ð31Þ

μ̂
*

0 ¼ μ̂ABC ; μ̂ABC ; μ̂ABC ; μ̂ABC ; μ̂ABC ; μ̂ABC½ � ð32Þ

In this case, the chi-square distribution will have two degrees of freedom, since the

alternate hypothesis has three free parameters and the null hypothesis has one free par-

ameter. More specifically, our null hypothesis is Equation 33:

μA ¼ μB; μA ¼ μC ; μB ¼ μC ð33Þ

and our alternate hypothesis is Equation 34:

μA≠μB OR μA≠μC OR μB≠μC ð34Þ

The optimal estimate of the single shift parameter for the null hypothesis is Equation 35:

μ̂0 ¼ argmax
μ

Y
i
f xi; μð Þ ¼ μ̂ABC ð35Þ

The optimal estimates of the shift parameters for the alternate hypothesis are shown

in Equation 36:

μ̂1i ¼ f argmax
μ

Y
i∈A

f ðxi; μÞ ¼ μ̂A ; ∀ i ∈ A

argmax
μ

Y
i∈B

f ðxi; μÞ ¼ μ̂B ; ∀ i ∈ B

argmax
μ

Y
i∈C

f ðxi; μÞ ¼ μ̂C ;∀ i ∈ C

ð36Þ

For all six replicates in our three-condition experiment, the 3DLRT test statistic is

then Equation 37:

TLRT ¼ 2log
f ðzA1; μ̂AÞ � f ðzA2; μ̂AÞ � f ðzB1; μ̂BÞ � f ðzB2; μ̂BÞ � f ðzC1; μ̂CÞ � f ðzC2; μ̂CÞ

f ðzA1; μ̂ABCÞ � f ðz2; μ̂ABCÞ � f ðzB1; μ̂ABCÞ � f ðzB2; μ̂ABCÞ � f ðzC1; μ̂ABCÞ � f ðzC2; μ̂ABCÞ
ð37Þ

which can be rewritten more compactly to obtain Equation 23.

3DLRT-Z p value assignment and interaction classification

We call a single p value PLRT for each bin-bin pair being tested for differential inter-

action strength from the likelihood ratio test statistic TLRT using a chi-square distribu-

tion with two degrees of freedom. If there are N bin-bin pairs being tested for

differential interaction strength, there are N of these p values. We perform
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Benjamini-Hochberg multiple testing correction across all N of these p values,

obtaining adjusted p values QLRT. Interactions whose QLRT is above the target

false discovery rate are called “constitutive.” Interactions whose QLRT is below the

target false discovery rate are assigned a differential interaction classification

category by first ranking the μ̂ values across the three conditions so that

μ̂A0 > μ̂B0 > μ̂C0 (where A0 , B0 , C0 represent a permutation of the original condi-

tions A, B, C), and then deciding between the A0 only and A0 B0 classification

categories by checking to see which of the pairs (A0 , B0) or (A0 , B0) have μ̂ values

closer together. For example, if the pairwise comparisons have a low enough

QLRT to pass the FDR threshold and also follow μ̂A0 > μ̂B0 > μ̂C0 , then the classifi-

cation category is assigned to be (Equation 38):

Classification category ¼ A
0
only ; jμ̂A0−μ̂B0 j > jμ̂B0−μ̂C0 j
A

0
B

0
; jμ̂A0−μ̂B0 j < jμ̂B0−μ̂C0 j

(
ð38Þ

The full series of logic statements for all looping classifications are shown in Add-

itional file 4: Fig. S3.

3DeFDR-HiC

Overview

3DeFDR-HiC was developed to allow application of 3DeFDR to Hi-C data by ad-

dressing the key ways in which Hi-C data differs from 5C data. First, Hi-C contact

matrices are significantly larger than 5C contact matrices. The large size of the

data makes it infeasible to generate large numbers of simulated replicates needed

for estimation of the null distribution of the 3DeFDR-5C test statistic. Second, Hi-

C datasets are typically analyzed using a different set of transformations than those

used for 5C data. Most notably, Hi-C read counts are typically summed within

pairs of non-overlapping genomic bins, allowing easy interpretation of the sum of

raw read counts in each bin-bin pair as a discrete independent random variable.

Modeling of discrete random variables by Poisson or negative binomial (NB) distri-

butions permits the formulation of a dramatically simplified statistical model whose

FDR can be determined directly from analytically defined null distributions fitted

directly to the real data rather than empirical distributions estimated via complex

transformations and computationally expensive simulations. In the following sec-

tions, we describe the simplified statistical model that makes up 3DeFDR-HiC, how

we estimated this model’s parameters, and how we used this model to test for dif-

ferential loops.

Statistical model of Hi-C counts

We described binned Hi-C read counts using the negative binomial distribution, pa-

rameterized in terms of its mean μ and dispersion α, whose probability mass function

is (Equation 39):
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f ðx; μ; αÞ ¼ Γðα−1 þ xÞ
x!Γðα−1Þ

�
α−1

α−1 þ μ

�α−1� μ
α−1 þ μ

�x

ð39Þ

We modeled the read count for the interaction between the ith and jth bin on a given

chromosome in replicate r ∈ R (where R is the set of all replicates being analyzed) in

condition c(r) (the biological condition of replicate r) as a negative binomial random

variable Xr, i, j (Equation 40):

Xr;i; j ∼ NBðμcðrÞ;i; jbr;ibr; jsr; j−i ; αcðrÞ; j−iÞ ð40Þ

where μc(r),i,j represents a condition-specific, replicate-independent true interaction

strength for the interaction between the ith and jth bin in condition c(r), br,i and br,j
represent a locus-specific bias factor for the ith and jth bin, respectively, sr,j − i repre-

sents a distance-dependent library size factor for replicate r at distance j − i, αc(r),j − i

represents a condition-specific, distance-dependent dispersion value for condition c(r)

at distance j − i, and NB(μ, α) represents a negative binomial distribution with mean μ

and dispersion α. Distance j − i is in units of the number of bins.

The replicate-specific bias vectors b are intended to capture the effects of locus-

specific biases such as GC content, restriction fragment length, and mappability which

are known to influence Hi-C read counts [58, 59]. The replicate-specific, distance-

dependent library size factors sr,j − i are intended to capture the effects of different se-

quencing depths across the replicates being analyzed, which often influence different

distance scales in an inconsistent, nonlinear manner. The probability mass function of

our final model is shown in Equation 41:

f ðxr;i; j ; μcðrÞ;i; jbr;ibr; jsr; j−i ; αcðrÞ; j−iÞ ¼ ΓðαcðrÞ; j−i−1 þ xr;i; jÞ
xr;i; j!ΓðαcðrÞ; j−i−1Þ

�
�

αcðrÞ; j−i−1

αcðrÞ; j−i−1 þ μcðrÞ;i; jbr;ibr; jsr; j−i

�α−1

�
�

μcðrÞ;i; jbr;ibr; jsr; j−i
αcðrÞ; j−i−1 þ μcðrÞ;i; jbr;ibr; jsr; j−i

�xr;i; j

ð41Þ

Estimating bias vectors

We estimated b̂r;: , the locus-specific bias vector for each replicate r, using the Knight-

Ruiz matrix balancing algorithm [11, 59]. In order to facilitate convergence of the algo-

rithm, we filtered out sparse rows and columns of the contact matrix. Specifically, we

filtered out any row of the contact matrix with fewer than 25 nonzero entries within

the first 300 entries counting from the diagonal in either direction (upstream or down-

stream). After matrix balancing, we filtered out rows and columns with bias factors

above 10 or below 0.1, as we and others have observed that these rows and columns

are likely to contain artifacts from the balancing procedure [66].
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Estimating size factors

We found that a single median of ratios size factor [67] was insufficient to normalize

the data across libraries with different sequencing depths, leading to biases visible in

MA plots of the data. Therefore, we chose to estimate ŝr;d , the per-distance size factors

for replicate r at distance d, using a distance-dependent variation of the median of ra-

tios method. To reduce the variance in our size factor estimates, we first grouped all

bin-bin pairs on each chromosome with a non-zero read count in any replicate and

with interaction distances less than 5Mb into 100 equal-number groups by distance,

creating sets of bin-bin pair indices Gk = {(i, j) ∣ pixel (i, j) is in the kth group}. We then

computed a per-group median of ratios size factor ~sr;k for each group Gk for each repli-

cate r ∈ R (Equation 42):

~sr;k ¼ median
ði; jÞ∈Gk

yr;i; j�Y
r0∈R

yr0 ;i; j

� 1
jRj

ð42Þ

where yr;i; j ¼ xr;i; j

b̂r;ib̂r; j

represents the matrix balanced read count for the interaction be-

tween the ith and jth bin in replicate r. We excluded points (i, j) that have a zero value

in any replicate from further analysis. To ensure that our final size factor estimates are

a smooth function of interaction distance, we then used piecewise linear

interpolation on the graph of our per-group size factors ~sr;k versus their per-group

average distance meanði; jÞ∈Gk
ð j−iÞ to obtain per-distance size factors ŝr;d for all

interaction distances d between 0 and 5Mb (0 ≤ d ≤ 500) and for all replicates r ∈ R.

We excluded interactions beyond 5Mb (d > 500) from further analysis, because the

vast majority of true looping interactions detectable by Hi-C are thought to occur

within this distance. We found that this distance-dependent size factor-based

normalization was sufficient to equalize library size differences across length scales

(Additional file 2: Fig. S14).

Estimating the dispersion

To estimate dispersion parameters using only a small number of replicates, we

took advantage of the large number of pixels in Hi-C datasets. Similar to the

underlying assumption in 3DeFDR-5C, we assumed that binned Hi-C read counts

at similar distance scales should have similar statistical properties. Therefore, we

pooled interactions with identical interaction distances to obtain less noisy esti-

mates of the dispersion parameter. To account for the dependence between dis-

persion and mean commonly observed in high-throughput sequencing datasets

[67], we pooled together interactions with the same interaction distance (and

therefore similar means). We estimated a condition-specific distance-dispersion

relationship (DDR), where the dispersion for an interaction can be estimated

from its condition and the linear genomic distance separating the two interacting

bins.

To estimate the DDR for a given condition c, we first computed the mean across rep-

licates of the same condition for every pixel in Hi-C matrices of bias- and size factor-

normalized data (Equation 43):
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�zc;i; j ¼ 1
jRcj

X
r∈Rc

zr;i; j ð43Þ

where Rc = {r ∈ R ∣ c(r) = c} represents the set of replicates in condition c and zr;i; j

¼ xr;i; j

b̂r;ib̂r; ĵsr; j−i
represents the interaction count for the interaction between the ith and jth

bin in replicate r, normalized for locus-specific bias and library size. During our ex-

ploratory analysis, we learned that we are underpowered to answer statistical questions

about possible looping interactions at pixels with < 1 read in a given condition. There-

fore, we eliminated points (i, j) which have a normalized mean for a given pixel, zc;i; j ,

below 1 for replicates across any condition c. For each condition c, we grouped the sur-

viving points (i, j) according to their interaction distance j − i. At each interaction dis-

tance d, and for each condition c, we estimated a single dispersion value ~αc;d across the

normalized interaction counts zr,i,j for all points (i, j) ∈ {(i, j) ∣ j − i = d} and all replicates

r ∈ Rc using an implementation of quantile-adjusted conditional maximum likelihood

(qCML) [68]. We tried simpler dispersion estimation approaches, but qCML provided

the most unbiased estimates during our exploratory data analysis. Briefly, we started

from an initial dispersion guess of 0.01 and iteratively update it by repeating two steps. In

the first step, we used a “quantile-to-quantile mapping” method based on the q2qnbi-

nom() function in EdgeR to transform xr,i,j into pseudocount ~xr;i; j on the scale of the geo-

metric mean of the combined scaling factors b̂r;ib̂r; jŝr; j−i for each pixel across replicates of

the same condition. To determine the means of the negative binomial distributions we

were converting between, we fitted the mean parameter μc(r),i,j of our negative binomial

model in Equation 41 for each pixel directly via maximum likelihood using the raw data,

our combined per-pixel scaling factors b̂r;ib̂r; jŝr; j−i , and our latest estimate of the disper-

sion ~αc;d . In the second step, we updated our guess for ~αc;d by optimizing the conditional

maximum likelihood of the pseudodata (Equation 44):

~αc;d ¼ argmax
α

X
ði; jÞj j−i¼d

2
64 X

r∈Rc

logΓð~xr;i; j þ α−1Þ þ logΓðjRcj � α−1Þ

−logΓð
X
r∈Rc

~xr;i; j þ jRcj � α−1Þ−jRcj � logΓðα−1Þ

3
75

ð44Þ

We repeated these steps until the absolute change in the estimated dispersion ~αc;d
was less than 1e−4. Unlike all other steps in our workflow which were performed inde-

pendently on each chromosome, we estimated a single value of ~αc;d for each condition

and each distance scale using data from all chromosomes. We excluded distance scales

lower than 40 kb (d < 4) since we found these distance scales to be difficult to model

and call loops in even within individual conditions. We also filtered our per-condition

loop call sets to exclude loops within 40 kb to help avoid false-positive calls at ex-

tremely short distances. Future work may extend our model to include shorter distance

scales.

Fernandez et al. Genome Biology          (2020) 21:219 Page 32 of 44



Fitting distance versus dispersion trends

We observed that the per-distance dispersion estimates ~αc;d showed a generally clear and

consistent trend with respect to distance, though the estimates appeared to get noisy at

high distance scales where fewer bin-bin pairs passed our minimum-mean filter.

Therefore, we applied LOWESS smoothing separately for each condition c to the

graph of interaction distance d versus ~αc;d , obtaining final smoothed per-condition,

per-distance dispersion estimates α̂c;d: We observed that the per-distance dispersion

estimates ~αc;d showed low sampling variability at short distances, but high sampling

variability at long distances. Therefore, when performing this LOWESS fit, we de-

cided to employ a weighted LOWESS fitting strategy as detailed below.

We started by estimating the precision of each per-distance dispersion estimate ~αc;d
via a rolling sample variance with a centered window of size 20 distance scales d. When

the rolling window rolled off the left or right edge of ~αc;: , we filled it with the first or

highest sample variance, respectively. In this way, we obtained an estimate of the sam-

pling variance of ~αc;d for each distance d, which we denote as vc,d (Equation 45):

vc;d ¼

undefined ; d < 4 ðthese distance ranges were excludedÞ
vc;14 ; 4≤d < 14 ðwindow rolls beyond left edgeÞ

Xdþ9

d
0 ¼d−10

ð~αc;d′− Xdþ9

d″¼d−10

~αc;d′

20 Þ2
19

; 14≤d≤491ðrolling window varianceÞ

max
14≤d

0
≤491

ðvc;d0 Þ ; 491 < d≤500 ðwindow rolls beyond right edgeÞ

undefined ; d > 500 ðthese distance ranges were excludedÞ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð45Þ

We then computed unscaled weights wc,d as the respective precisions (inverse vari-

ances) raised to the 1/4th power (Equation 46):

wc;d ¼
�

1
vc;d

�1
4

ð46Þ

We found empirically that this choice of transformation resulted in weights that

yielded LOWESS fits robust to changes in the LOWESS fraction parameter across all

distance scales.

To weigh the LOWESS fit towards the higher-precision points, we rescaled the un-

scaled weights wc,d so that the lowest was equal to 1, rounded them to the closest non-

greater integer, and created a number of duplicates of each point equal to this integer

~wc;d (Equation 47):

~wc;d ¼ ⌊ wc;d

min
d
0
ðw0

c;dÞ ⌋ ð47Þ

Finally, we performed LOWESS fitting on the duplicated data points using a LOW-

ESS smoothing fraction of 15
max
d

ð~wc;dÞ �mean
d

ðwc;dÞ. We empirically found this LOW-
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ESS smoothing fraction to yield reasonable LOWESS fits for a wide range of dataset

sizes (number of chromosomes) and maximum distance scales. The optimal choice of

LOWESS smoothing fraction remains an open research question, and this value can be

overridden by the user with a simple keyword argument. Thus, we obtained a smooth

dispersion-distance relationship function g(d) which returns the smoothed dispersion

given a distance d.

We observed that dispersion decreased with increasing distance at extremely short

distance scales (typically within ~ 70 kb). To avoid underestimation of dispersion at

these distance scales by the LOWESS fit, we used the per-distance dispersion estimates

~αc;d as our final dispersion estimates α̂c;d for the first few distances d until these disper-

sion estimates began increasing, switching to the LOWESS fit for all remaining dis-

tances (Equation 48):

α̂c;d ¼ ~αc;d ; d < d�
c

gðdÞ ; d≥d�
c

(
ð48Þ

where g(d) is the smooth dispersion-relationship function we obtained via our

weighted LOWESS fitting and d�
c is the first distance (lowest d) for which ~αc;d� > ~αc;d�−1

(Equation 49):

d�
c ¼ min

d∈fd0 j~α
c;d

0 >~α
c;d

0
−1
g
ðdÞ ð49Þ

We believe that using the per-distance dispersion estimates ~αc;d at the shortest dis-

tances scales is acceptable because we observed that the sampling variability of ~αc;d was

lowest at the shortest distance scales.

Likelihood ratio test for differential loops

Having fitted almost all the parameters of our statistical model, we then tested

for differences in the last parameter, the true condition-specific interaction

strength μc, i, j. Our null hypothesis (for each tested interaction) was that the true

interaction strength is the same in each condition, μc′,i,j = μc′′,i,j ∀ c′, c′′ ∈ C,

where C is the set of all conditions. Our alternative hypothesis was that any pair

of conditions differ in their true interaction strength (i.e., ∃ c′, c′′ ∈ C such that

μc′,i,j ≠ μc′′,i,j). To test these hypotheses, we constructed models corresponding to

each hypothesis and compared their likelihoods using a likelihood ratio test.

Under the null hypothesis model, we computed a single true interaction strength

parameter μ0,i,j, representing the constraint that all the condition-specific true

interaction strength parameters must be equal (i.e., μ0,i,j = μc,i,j ∀ c ∈ C). Under

the alternative hypothesis model, we allowed each condition to have its own

condition-specific interaction strength parameter μc,i,j. For each model, we fitted

the true interaction strength parameter(s) using maximum likelihood estimation

and Equation 39, holding all other model parameters fixed, to obtain estimates

μ̂0;i; j and μ̂c;i; j (for each condition c) for the null and alternative hypothesis
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models, respectively. We then constructed the likelihood ratio for each pixel (i, j)

(Equation 50):

λi; j ¼

Y
c∈C

Y
r∈Rc

f ðxr;i; j; μ̂c;i; jb̂r;ib̂r; jŝr; j−i; α̂c;i; jÞY
c∈C

Y
r∈Rc

f ðxr;i; j; μ̂0;i; jb̂r;ib̂r; jŝr; j−i; α̂c;i; jÞ
ð50Þ

where f(x; μ, α) is the negative binomial probability mass function (Equation 39). Under

the null hypothesis, the likelihood ratio test statistic should asymptotically follow a chi-

square distribution (Equation 51):

−2logλi; j∼χ2jCj−1 ð51Þ

where the degrees of freedom |C| − 1 of the χ2 distribution matches the differ-

ence in degrees of freedom between the null and alternate models. We used

this asymptotic distribution to call right-tail p values for each pixel (i, j)

(Equation 52):

pi; j ¼ Pðχ2jCj−1≥−2logλi; jÞ ð52Þ

Per-condition loop calling

While our model is capable of calling p values for differential interaction strength

across conditions at all pixels within our chosen interaction distance range (40 kb

to 5 Mb) and with an average normalized count across replicates of the same con-

dition zc;i; j of at least 1, we were primarily interested in specifically identifying dif-

ferential interactions occurring specifically at loops. Therefore, in addition to the

raw contact matrices used for the statistical analysis described above, 3DeFDR-HiC

also takes as input a list of loops identified in any of the individual conditions ana-

lyzed, called by any external loop calling algorithm. For our main analysis, we used

a loop call set which we obtained from merged raw contact matrices from all four

replicates of both the ES and NPC conditions in the Bonev et al. dataset, process-

ing these two conditions independently. We identified loops using an approach de-

tailed elsewhere [69] with only a few minor changes in parameters. To

parameterize the size of the donut filters, we used p = 2 and w = 6. We skipped the

lambda chunking step; instead, we used BH-FDR directly on the set of all p values

called across all chromosomes to obtain q values. Finally, for thresholding signifi-

cant loops within conditions, we used a q value threshold of 0.025, a minimum

cluster size of 4, and we excluded loop clusters with interaction distances smaller

than 40 kb.

False discovery rate control

To control the false discovery rate given the large number of pixels being tested for dif-

ferential looping, we first discarded all pixels (i, j) which were not involved in loops

present in any of the condition, as determined by the per-condition loop calls described
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above. We then applied Benjamini-Hochberg false discovery rate (BH-FDR) control to

the p values pi,j at all remaining pixels across all chromosomes to obtain corresponding

q values qi,j for each loop pixel.

Clustering significantly differential interactions

We have previously observed that true looping interactions typically involve

multiple adjacent pixels in the contact matrix. The same appears to be true for

differential looping interactions. In order to avoid false positives caused by sin-

gle significant pixels that are not supported by other adjacent significant pixels,

we clustered all significant pixels at the chosen FDR threshold into clusters of

contiguous, directly adjacent pixels and discarded pixels lying in clusters smaller

than a specific minimum size threshold. We repeated this process for the insig-

nificant pixels. For the final calls presented in Fig. 6, we selected an FDR

threshold of 1% and a minimum cluster size threshold of 3.

Classifying significantly differential interactions

For simplicity, we classified each differential pixel (i, j) as specific to whichever

condition in which its bias- and size factor-normalized mean value zc;i; j (as de-

fined in Equation 43) is highest. This approach works well for our Hi-C ex-

ample analysis, in which there are only two conditions. More complicated

experimental designs may require more sophisticated labeling of the differential

interactions.

Simulating raw contact matrices

To simulate raw contact matrices, we started from the mean of bias- and size

factor-normalized data for each pixel across replicates within a chosen condition.

We used the ES condition, so this corresponds to zES;i; j as defined in Equation 43

above. We used zES;i; j as a starting point from which we create similar matrices

for two new artificial conditions A and B. We formed the condition-specific true

interaction strength matrices for these new artificial conditions, μA,i,j and μB,i,j, by

starting from zES;i; j and perturbing some looping clusters present in the real ES

dataset (as indicated by our externally obtained loop calls). To make our simula-

tions, we chose an effect size β and a proportion of truly differential loops pdiff. At

random, we labeled each real ES loop as constitutive with probability 1 − pdiff
(leaving it unchanged across the two artificial conditions) and truly differential

with probability pdiff. The truly differential loops were then assigned into four dif-

ferential categories with equal probability (pdiff4 each): up in A, down in A, up in B,

and down in B. If a loop was labeled as up in A, we perturbed the loop by in-

creasing the values of μA,i,j under the loop by adding β × μA,i,j, where β represents

an effect size in terms of a percentage change from the original interaction

strength. In order to preserve the smooth appearance of the contact heatmap, we

also perturbed pixels adjacent to the loop by half of this effect size. If a loop was

labeled as down in A, we instead subtracted β × μA,i,j from the values of μA,i,j
under the loop. If each loop pixel (i, j) is labeled according to the differential or
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constitutive label of the loop it lies under, the construction of μA,i,j can be written

as follows (Equation 53):

μA;i; j ¼

�zES;i; j ; ði; jÞ is constitutive; down inB; or up inB 1−
pdiff
2

� �
�zES;i; j þ β� �zES;i; j ; ði; jÞ is up inA

pdiff
4

� �
�zES;i; j−β� �zES;i; j ; ði; jÞ is down inA

pdiff
4

� �
�zES;i; j þ β

2
� �zES;i; j ; ði; jÞ is not a loop but any adjacent pixel is up inA

�zES;i; j−
β
2
� �zES;i; j ; ði; jÞ is not a loop but any adjacent pixel is down inA

�zES;i; j ; ði; jÞ is not a loop and no adjacent pixel is differential inA

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð53Þ

where the values in parentheses represent the probability that a loop will receive the in-

dicated label. We perturbed the loops labeled as up in B and down in B in an analogous

manner (Equation 54):

μB;i; j ¼

�zES;i; j ; ði; jÞ is constitutive; down inA; or up inA 1−
pdiff
2

� �
�zES;i; j þ β� �zES;i; j ; ði; jÞ is up in B

pdiff
4

� �
�zES;i; j−β� �zES;i; j ; ði; jÞ is down in B

pdiff
4

� �
�zES;i; j þ β

2
� �zES;i; j ; ði; jÞ is not a loop but any adjacent pixel is up inB

�zES;i; j−
β
2
� �zES;i; j ; ði; jÞ is not a loop but any adjacent pixel is down inB

�zES;i; j ; ði; jÞ is not a loop and no adjacent pixel is differential inB

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð54Þ

Having obtained perturbed artificial condition-specific true interaction strength

matrices μA,i,j and μB,i,j, we next biased them using bias vectors b̂ and size factors ŝ esti-

mated from the real dataset’s ES replicates to obtain matrices of biased mean values

μp,i,j for each simulated pseudoreplicate (Equation 55):

μbiasedp;i; j ¼ μcðpÞ;i; jb̂rðpÞ;ib̂rðpÞ; jŝrðpÞ; j−i; p∈fA1;A2;B1;B2g ð55Þ

where p ∈ {A1, A2, B1, B2} represents a simulated pseudoreplicate, c(p) ∈ {A, B} repre-

sents the artificial condition that simulated replicate p belongs to, and r(p) ∈ {ES _ 1, ES

_ 3} represents a real ES replicate that has been matched to the simulated pseudorepli-

cate p. Finally, we simulated raw contact matrices Xp, i, j for each simulated pseudore-

plicate p from the model (Equation 56):

Xp;i; j∼NB μbiasedp;i; j ; α̂ES; j−i
� �

ð56Þ

where μbiasedp;i; j is the pseudoreplicate-specific biased mean matrix for a simulated pseu-

doreplicate replicate p in artificial condition c(r) ∈ {A, B} and α̂ES; j−i is the final ES

condition-specific distance-dependent dispersion value estimated from the real ES data

(as defined in Equation 48). Examples of a simulated loop at the range of effect sizes

are shown in Fig. 7a.
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Evaluating model performance on simulated Hi-C data

Having simulated raw contact matrices with known true differential loops, we could re-

peat our differential looping analysis on these simulated matrices and compare the re-

sults to the locations of the truly differential loops. In order to perform the comparison,

we first constructed a Boolean variable ti,j which is one whenever the pixel at (i, j) is part

of a truly differential loop and is zero otherwise. We then used a receiver operating char-

acteristic (ROC) curve to assess how well the score 1 − qi,j (where qi,j is the q value against

the null hypothesis that the pixel is a differential interaction) predicted the true differential

status ti,j of each pixel (i, j) which is part of a loop present in the real condition used to

generate the simulations (in this case, ES) as determined by the external loop call set. We

used this approach to plot the ROC curves shown in Fig. 7c, Additional file 2: Fig. S12D,

and Additional file 2: Fig. S13D. We also computed the false discovery rate (FDR) at each

FDR threshold along the ROC curve (by binarizing the score 1 − qi,j using each FDR

threshold and using the confusion matrix to directly determine the FDR) to draw the FDR

control curves shown in Fig. 7d and Additional file 2: Fig. S13C. Finally, we used this same

approach to plot power (the true positive rate, or one minus the type II error rate) as a

function of FDR threshold as shown in Fig. 7e.

To assess the performance of our models at different distances scales, we stratified all

loops in our real ES call set into short (< 400 kb), medium (400–800 kb), or long (> 800

kb) subsets and assessed the performance of our models at each distance subset using

ROC curves (Additional file 2: Fig. S13D) and FDR control curves (Additional file 2:

Fig. S13C). When drawing the FDR control curves for each distance subset, we re-ran

the BH-FDR control procedure on the subset of p values falling in that distance subset

to avoid the possibility that a true positive rate (TPR) at short distances might artifi-

cially inflate the FDR at long distances. Since our power (or equivalently, TPR) is lower

at long distances where there are fewer reads (Additional file 2: Fig. S13D), it is ex-

pected that the proportion of false discoveries will be higher at longer distances. Be-

cause they are generated by re-running the BH-FDR step on every distance subset, our

distance subset FDR control curves are adjusted for this effect.

To directly measure the extent to which our models showed a bias for calling

differential loops at different distance scales, we quantified the proportion of loop

pixels in each of the distance subsets described above with a p value below the 5th

percentile of all p values in all loop pixels (irrespective of interaction distance). To

rule out the possibility that low p values are enriched in regions where loops are

more often truly differential, we performed this quantification using simulated data

containing no truly differential loops. We used this approach to generate the bar

plots in Additional file 2: Fig. S13E.

Comparison to simplified alternative models

To justify certain choices made in the design of our model, we compared its perform-

ance to that of simplified alternative models. These comparisons are visualized in Add-

itional file 2: Fig. S13.

In our Poisson model, we replaced the negative binomial distribution with the sim-

pler Poisson distribution, which does not account for any possible overdispersion in the

data. Under this model, dispersion was not estimated or used directly, but was

Fernandez et al. Genome Biology          (2020) 21:219 Page 38 of 44



effectively assumed to be equal to zero for all pixels (Additional file 2: Fig. S13A, Pois-

son model). Under this model, the likelihood ratio (corresponding to Equation 50

above) becomes (Equation 57):

λPoisi; j ¼

Y
c∈C

Y
r∈Rc

f Pois xr;i; j; μ̂
Pois
c;i; j b̂r;ib̂r; jŝr; j−i

� �
Y
c∈C

Y
r∈Rc

f Pois xr;i; j; μ̂
Pois
0;i; jb̂r;ib̂r; jŝr; j−i

� � ð57Þ

where fPois(x; μ) is the Poisson probability mass function (Equation 58):

f Pois x; μð Þ ¼ μxe−μ

x!
ð58Þ

and μ̂Poisc;i; j and μ̂Pois0;i; j are the mean parameters of this Poisson model, estimated via max-

imum likelihood while holding all other model parameters fixed.

This model performed reasonably well on true positive simulations in terms of sensi-

tivity and specificity (Additional file 2: Fig. S13D) but failed to control type I error in

simulations containing only constitutive loops (Additional file 2: Fig. S13B, Poisson

model) and failed to control FDR in simulations containing some truly differential

loops (Additional file 2: Fig. S13C, orange curve).

In our unsmoothed dispersion model, we used pixel-wise sample variance estimates

to parameterize our negative binomial (NB) distributions, entirely forgoing pooling of

pixels during variance estimation (Additional file 2: Fig. S13A, Sample Variance). We

first computed pixel-wise sample variance estimates σ̂2c;i; j within each condition c

(Equation 59):

σ̂2
c;i; j ¼

1
Rcj j−1

X
r∈Rc

zr;i; j−zc;i; j
� �2 ð59Þ

where Rc = {r ∈ R ∣ c(r) = c} represents the set of replicates in condition c; zr;i; j ¼ xr;i; j

b̂r;ib̂r; ĵsr; j−i
represents the interaction count for the interaction between the ith and jth bin in replicate

r, normalized for locus-specific bias and library size; and zc;i; j is the pixel-wise mean of the

zr, i, j for all r ∈ Rc as defined in Equation 43. To parameterize the negative binomial distri-

butions with variance equal to σ̂2c;i; j in a manner consistent with our existing framework,

we used the properties of the NB distribution to find the dispersion α̂SVc;i; j such that

Var½NBðzc;i; j; α̂SVc;i; jÞ� ¼ σ̂2
c;i; j. Because the negative binomial distribution is undefined when

dispersion is less than or equal to zero, we enforced a minimum value for α̂SVc;i; j of 1e−7 to

avoid numerical instability (Equation 60):

α̂SVc;i; j ¼ max 1� 10−7;
σ̂2c;i; j−zc;i; j

z2c;i; j

 !
ð60Þ
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This model suffered from reduced specificity and sensitivity compared to our pooled

dispersion model (Additional file 2: Fig. S13D, red curve).

In our global dispersion model, we used qCML to fit a single dispersion value for

each condition, forgoing the fitting of a trend between dispersion and mean (Additional

file 2: Figure S13A, Global NB) to obtain a single dispersion estimate for each condition

c, which we denote α̂globalc . In this fitting, we included all pixels which are part of loop-

ing interactions, independent of their interaction distance. This approach ignores a

clear trend between dispersion and distance visible in the real data (Fig. 6). This model

performed reasonably well on true positive simulations in terms of sensitivity and spe-

cificity (Additional file 2: Figure S13D) but showed a strong bias for calling more differ-

ential interactions at longer distances and fewer differential interactions at shorter

distances (Additional file 2: Figure S13D, green curve and Additional file 2: Figure

S13E, green bars).

Comparison to diffHic

In addition to comparing against our own simplified models, we also compared he

performance of 3DeFDR-HiC to diffHiC [45] genome-wide on a simulated dataset

based on the ES condition of the real Bonev dataset, setting 40% of ES loops to be

differential with an effect size of ± 30% (Additional file 6: Table S5). We applied

diffHiC following the package’s provided usage guidelines for Hi-C data. We input-

ted our Hi-C dataset as raw, binned (10 kb wide bins) counts. Library sizes were

inputted as the total number of counts in each replicate. Following the diffHic user

guide, we first filtered rows with any NaN counts. Then we filtered by average

abundance (diffHic user guide section 4.1), discarding any bin-bin pair with an

average abundance across all sample replicates of less than 5. We then used the

direct filter (diffHic user guide section 4.2) to directly remove low-abundance bin-

bin pairs, discarding any with abundances less than 2-fold higher than the esti-

mated non-specific ligation rate (estimated as the median abundance across bin-bin

pairs). We chose 2-fold above this estimate as our threshold instead of 5-fold, as

presented in the usage instructions’ example, because we found this threshold dis-

carded too many points for us to perform later steps in the diffHiC pipeline. Next

as recommended (diffHic user guide section 4.3), we filtered bin-bin pairs as a

function of interaction distance, discarding pairs with abundances less than the

value expected from compaction (generated using the filterTrended method, no pa-

rameters to set) choosing not to increase this threshold by an additional fold

change value. Finally, we filtered bin-bin pairs via the peak calling approach

(diffHic user guide section 4.4) using the guide recommended values for the filter’s

parameters (flank.width = 5, the minimum threshold for peak enrichment min.e-

nrich at 0.17, the minimum threshold for peak counts min.count at 3, and the near

diagonal cut-off min.diag of 2L). Next, we applied non-linear normalization (diffHic

user guide section 5.2) to remove trended biases between libraries, specifically

using LOESS normalization, using type=“loess” for the normOffsets method. We

also separately filtered near diagonal points, using by.dist=1.5e6 with method filter-

Diag and again LOESS normalization using type=“loess” with method normOffSets as

presented in the user guide (second half of diffHic section 5.2.1).
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We then modeled biological variability between replicates. First, we estimated nega-

tive binomial dispersion for each bin-bin pair (diffHic user guide section 6.1–6.2) using

a single-factor design matrix design = model.matrix (~conditions) where conditions is

the corresponding list of the biological condition label for the input sample set. We

performed estimation of negative binomial dispersion using this design. We then esti-

mated QL dispersion using this design as recommended in the user guide, setting ro-

bust = TRUE for method glmQLFit (diffHic user guide section 6.3).

Finally, we tested for significantly differential interactions using the quasi-likelihood

F-test via method glmQLFTest (diffHic user guide section 7.1; no parameters to set)

and obtained p values adjusted to correct for multiple testing using the Benjamini-

Hochberg (BH) method (diffHic user guide section 7.2). We then saved output log fold

change and adjusted p values for each bin-bin pair to file and then visualized these re-

sults using our own tools. We thresholded bin-bin pairs to an FDR threshold, assigned

loop classifications according to the sign of the log fold change value, and finally plot-

ted these classifications spatially. Specifically, in Additional file 2: Figure S12, we ran

applied this scheme with FDR thresholds of 0.3 (or 30%), 0.25, 0.2, 0.15, 0.1, 0.05, 0.01,

and 0.001. We used the true labels from our simulations, the adjusted p values from

diffHic, and the q values called by 3DeFDR-HiC to draw ROC curves comparing the

performance of the two methods (Additional file 2: Figure S12D).
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[73]). Source code for both packages is provided under the MIT license. The data analyzed in this study are available
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