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SUMMARY

Pluripotent genomes are folded in a topological
hierarchy that reorganizes during differentiation.
The extent to which chromatin architecture is recon-
figured during somatic cell reprogramming is poorly
understood. Here we integrate fine-resolution ar-
chitecture maps with epigenetic marks and gene
expression in embryonic stem cells (ESCs), neural
progenitor cells (NPCs), and NPC-derived induced
pluripotent stem cells (iPSCs). We find that most
pluripotency genes reconnect to target enhancers
during reprogramming. Unexpectedly, some NPC in-
teractions around pluripotency genes persist in our
iPSC clone. Pluripotency genes engaged in both
‘‘fully-reprogrammed’’ and ‘‘persistent-NPC’’ inter-
actions exhibit over/undershooting of target expres-
sion levels in iPSCs. Additionally, we identify a sub-
set of ‘‘poorly reprogrammed’’ interactions that do
not reconnect in iPSCs and display only partially
recovered, ESC-specific CTCF occupancy. 2i/LIF
can abrogate persistent-NPC interactions, recover
poorly reprogrammed interactions, reinstate CTCF
occupancy, and restore expression levels. Our re-
sults demonstrate that iPSC genomes can exhibit
imperfectly rewired 3D-folding linked to inaccurately
reprogrammed gene expression.

INTRODUCTION

Mammalian genomes are folded in a hierarchy of architectural

configurations that are intricately linked to cellular function. Indi-

vidual chromosomes are arranged in distinct territories and then

further partitioned into a nested series of Megabase (Mb)-sized

topologically associating domains (TADs) (Dixon et al., 2012;

Nora et al., 2012) and smaller sub-domains (termed subTADs)
(Phillips-Cremins et al., 2013; Rao et al., 2014). TADs/subTADs

vary widely in size (i.e., 40 kilobase [kb] to 3 Mb) and are

characterized by highly interacting chromatin fragments de-

marcated by boundaries of abruptly decreased contact fre-

quency. Long-range looping interactions connect distal genomic

loci within and between TADs/subTADs (Jin et al., 2013; Phillips-

Cremins et al., 2013; Rao et al., 2014; Sanyal et al., 2012). Single

TADs, or a series of successive TAD/subTADs, in turn congre-

gate into spatially proximal, higher-order clusters termed A/B

compartments. Compartments generally fall into two classes:

(1) ‘‘A’’ compartments enriched for open chromatin, highly ex-

pressed genes, and early replication timing and (2) ‘‘B’’ compart-

ments enriched for closed chromatin, late replication timing, and

co-localization with the nuclear periphery (Dixon et al., 2015; Lie-

berman-Aiden et al., 2009; Pope et al., 2014; Rao et al., 2014).

The organizing principles governing genome folding at each

length scale remain poorly understood.

Recent high-throughput genomics studies have shed new

light on the dynamic nature of chromatin folding during embry-

onic stem cell (ESC) differentiation. Up to 25% of compartments

in human ESCs switch their A/B orientation upon differentiation

(Dixon et al., 2015). Compartments that switch between A and

B configurations display a modest but correlated alteration

in expression of only a small number of genes, suggesting that

compartmental switching does not deterministically regulate

cell-type-specific gene expression (Dixon et al., 2015). Similarly,

lamina associated domains are dynamically altered during ESC

differentiation (Peric-Hupkes et al., 2010). For example, the

Oct4, Nanog, and Klf4 genes relocate to the nuclear periphery

in parallel with their loss of transcriptional activity as ESCs differ-

entiate to astrocytes. TADs are largely invariant across cell types

and often maintain their boundaries irrespective of the expres-

sion of their resident genes (Dixon et al., 2012). By contrast,

long-range looping interactions within and between subTADs

are highly dynamic during ESC differentiation (Phillips-Cremins

et al., 2013; Zhang et al., 2013b). Pluripotency genes connect

to their target enhancers through long-range interactions and

disruption of these interactions leads to a marked decrease in

gene expression (Apostolou et al., 2013; Kagey et al., 2010).
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Thus, data are so far consistent with a model in which chromatin

interactions at the sub-Mb scale (within TADs) are key effectors

in the spatiotemporal regulation of gene expression during

development.

In addition to the forward progression of ESCs in develop-

ment, somatic cells can also be reprogrammed in the reverse di-

rection to induced pluripotent stem cells (iPSCs) via the ectopic

expression of key transcription factors (Takahashi and Yama-

naka, 2006). Since the initial pioneering discovery, many popula-

tion-based and single-cell genomics studies have explored

the molecular underpinnings of transcription factor-mediated

reprogramming (Hanna et al., 2009; Koche et al., 2011; Rais

et al., 2013; Soufi et al., 2012). Recent efforts have uncovered

changes in transcription, cell surfacemarkers, and classic epige-

netic modifications during intermediate stages in the reprogram-

ming process (Buganim et al., 2012; Lujan et al., 2015; Polo et al.,

2012). Although there is some evidence of epigenetic traces from

the somatic cell of origin (Bock et al., 2011; Kim et al., 2010; Polo

et al., 2010), the emerging model is that ESC-like epigenetic

and transcriptional states can be generally reset under proper re-

programming conditions (Stadtfeld et al., 2010).

The role for chromatin topology in the acquisition of plu-

ripotency during reprogramming has not yet been elucidated.

Recent studies have suggested that specific long-range interac-

tions between pluripotency genes such as Nanog and/or Oct4

and target enhancers can be reset during reprogramming and

precede reactivation of the involved genes (Apostolou et al.,

2013; de Wit et al., 2013; Denholtz et al., 2013; Wei et al.,

2013; Zhang et al., 2013a). Beyond these initial locus-specific

studies, it remains unknown whether the somatic cell genome

unfolds/refolds at the sub-Mb scale within TADs and how chro-

matin topology is linked to gene expression changes during

reprogramming. Here we report a detailed analysis of local

chromatin folding changes during somatic cell reprogramming.

We created �4–12 kb resolution chromatin architecture maps in

primary neural progenitor cells (NPCs), iPSCs derived from pri-

mary NPCs, and pluripotent ESCs. We employed Chromosome-

Conformation-Capture-Carbon-Copy (5C) to query fine-scale

architectural changes in Mb-sized regions around key develop-

mentally regulated genes. We find that chromatin folding is

markedly reconfigured within TADs during the transition from

primary NPCs to iPSCs. In many cases, pluripotency genes

re-engage in fully reprogrammed interactions with their target

ESC-specific enhancers. Unexpectedly, we also observe NPC

interactions around key pluripotency genes (e.g., Sox2 and

Klf4) that remain persistently tethered in our iPSC clone. Plurip-

otency genes engaged in ‘‘persistent NPC-like’’ interactions can

exhibit over/undershooting of gene expression levels in iPSCs,

despite the fact that they may have also re-established contact

with their target ESC-specific enhancer(s). We also uncover a

subset of ‘‘poorly reprogrammed’’ interactions that break apart

during differentiation and do not fully reconnect in our iPSC

clone. Many poorly reprogrammed interactions exhibit ESC-

specific CTCF occupancy that is lost during differentiation and

only partially recovered in iPSCs. Importantly, 2i/LIF conditions

can (1) abrogate persistent NPC-like interactions, (2) recover

poorly reprogrammed interactions, (3) reinstate inadequately re-

programmed CTCF occupancy, and (4) restore precise gene

expression levels.
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RESULTS

Chromatin Folding Markedly Reconfigures at the Sub-
Mb Scale during Reprogramming
To investigate changes in 3D chromatin topology during somatic

cell reprogramming, we first generated �4–12 kb resolution

chromatin architecture maps in primary NPCs, iPSCs derived

from primary NPCs, and ESCs (Figure 1A). To achieve a compa-

rable genetic background to our pluripotency model (V6.5 ESCs;

129/SvJae 3 C57BL/6), we selected a previously published

iPSC clone derived from primary NPCs isolated from neonatal

brains of Sox2-GFP indicator mice (mixed 129/SvJae 3

C57BL/6 genetic background) (Eminli et al., 2008; Stadtfeld

et al., 2008). Hochedlinger and colleagues generated this iPSC

clone via the transduction of primary Sox2-GFPNPCswith doxy-

cycline-inducible lentiviral vectors encoding Oct4, Klf4, and

c-Myc. Importantly, this iPSC clone was extensively character-

ized for its pluripotent properties as assessed by (1) expression

of endogenous pluripotency markers (Oct4, Sox2, and Nanog),

(2) demethylation of Oct4 and Nanog promoters, (3) transgene-

independent self-renewal, (4) in vivo teratoma formation of all

three germ layers, and (5) generation of chimeric mice (Eminli

et al., 2008). Our three cellular states enable a detailed analysis

of how chromatin unfolds/refolds between NPCs and iPSCs

and also facilitate the comparison of genome topology between

ESCs/iPSCs of comparable genetic background.

We employed 5C and high-throughput sequencing to create

fine-scale chromatin architecture maps spanning >7 Mb of the

mouse genome within a set of TADs (Dostie et al., 2006). 5C

combines Chromosome-Conformation-Capture (3C) with a

primer-based hybrid capture step to facilitate cost-effective

detection of sub-Mb-scale interactions in Mb-sized loci of inter-

est (Dekker et al., 2013). We used a tiled/alternating primer

design around Nanog, Sox2, Klf4, Oct4, Nestin, and Olig1–

Olig2 (described in detail in Phillips-Cremins et al., 2013). Our

5C primer design scheme enabled the creation of �4–12 kb res-

olution architecture maps for all loci combined across three

cellular states with fewer than 30 million reads per replicate

(Table S1). The power in this approach is that it focuses on eluci-

dating fine-scale architecture changes at the sub-Mb scale

within TADs (Figure 1B).

We first visualized 5C data with contact frequency heatmaps.

To resolve underlying topological features, we developed an

analysis pipeline to correct for known biases in 5C data and to

normalize samples within and between biological replicates

(described in detail in the Supplemental Experimental Proce-

dures). Briefly, raw data (Figure S1A) were quantile normalized

to bring the dynamic range of all samples onto equivalent scales

and to account for technical differences in sequencing depth

and library complexity (Figure S1B). To account for differences

in primer efficiency that lead to non-uniformities in coverage

across genomic regions, we applied our previously published

primer correction algorithm to quantile-normalized data (Fig-

ure S1C; Phillips-Cremins et al., 2013). We then applied a

blocked binning/smoothing algorithm to attenuate spatial noise

in 5C data (Figure S1D). Our ‘‘Relative Contact Frequency’’ heat-

maps revealed striking topological patterns that are dynamic

across cellular states and are unique to each genomic region

(Figure 1C).



Figure 1. High-Resolution Architecture

Maps Reveal Marked Chromatin Reconfigu-

ration during Somatic Cell Reprogramming

(A) Phase contrast images of the reprogramming

model system.

(B) Genome-wide ESC Hi-C data (Dixon et al.,

2012) at different bin sizes illustrating chromosome

territories, A/B compartments, and TADs. Images

made with the Juicebox tool (http://www.aidenlab.

org/juicebox/). The 4–12 kb resolution heatmaps

from the present study query fine-scale genome

folding at the sub-Mb scale within TADs.

(C) Relative contact frequency heatmaps are dis-

played for all biological replicates and regions

queried. Color bars range from low (gray) to high

(red/black) interaction frequencies.

(D) Distance-corrected interaction score heatmaps

for a select region around the Sox2 gene illustrating

the presence of dynamic chromatin architecture

among ESCs, NPCs, and iPSCs. Color bars range

from low (blue) to high (red/black) interaction

scores.
To further resolve the underlying architectural signal, we

corrected for the known distance-dependence background in

5C data (Sanyal et al., 2012) (Figures S1E–S1G). Consistent

with recent reports (Rao et al., 2014), we found that a local
Ce
distance-dependence model computed

independently for each region would

more precisely account for locus-specific

differences in chromatin folding that are

often over/underestimated by a global

background model (Figure S1G). Our

‘‘Distance-Corrected Interaction Score’’

heatmaps showed striking changes in to-

pological features among NPCs, iPSCs,

and ESCs (Figure 1D, Figures S1E and

S1F), with high consistency between rep-

licates and marked differences among

biological conditions (Table S2). A sys-

tematic comparative analysis at each

stage in the pipeline confirmed that we

have reduced known biases in 5C data

(Figures S1A–S1I and S2A–S2G).

iPSC Genomes Can Exhibit
Imperfectly Rewired Folding
Patterns
We next explored fine-scale chromatin

folding features within TADs by visually in-

specting our heatmaps. Consistent with

our previous work (Phillips-Cremins et al.,

2013), we observed marked changes in

chromatin architecture between ESCs

and NPCs. Importantly, we also noticed a

striking architectural reconfiguration be-

tween NPCs and NPC-derived iPSCs (Fig-

ures 1C and 1D). At many loci, iPSC

genome folding recapitulated the patterns

seen in V6.5 ESCs. However, we also
noticed several intriguing cases where iPSC topology retained

remnants of the folding patterns from NPCs (Figure 1D).

To further explore the possibility that genome folding might

be mis-wired during reprogramming, we conducted principal
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Figure 2. iPSC Genomes Can Exhibit Intermediate Folding and Expression Patterns between Somatic and Pluripotent Stem Cell States

Principal component analysis of (A) Distance-Corrected Interaction Frequency data and (B) normalized RNA-seq data for ESC, NPC, and iPSC replicates.

(A and B) Principal components 1 and 2 are scattered and the proportion of variance explained by each principal component is plotted below each scatterplot.
component analysis on our ‘‘Distance-Corrected Interaction

Frequency’’ data across all replicates and cellular states. Inter-

estingly, we observed that genome topology in our iPSC clone

exhibited folding patterns that were intermediate between

NPCs and the pluripotent stem cell state (Figure 2A). To explore

the functional significance of potential intermediate iPSC folding

patterns, we queried the transcriptome of all three cellular states

using RNA-seq. Consistent with our 3D observations, global

gene expression profiles in our iPSC clone were also parsed as

intermediate between ESCs and NPCs (Figure 2B). Together,

these results support the possibility that genome architecture

of some iPSC clones might be imperfectly wired within TADs

during reprogramming.

Dynamic 3D Interaction Classes during Cell Fate
Transitions
To identify high-confidence, long-range interactions across all

developmentally regulated loci, we fit our Distance-Corrected

Interaction Frequency data with a logistic distribution with loca-

tion/scale parameters computed independently for each region

(Figure S3A, Supplemental Experimental Procedures). We then

converted the p value from our fitted models into an interaction

score (�10*log2(p values)) that is comparable within and be-

tween experiments and allows the robust detection of interac-

tions that are significant above the expected background signal.

We next employed a thresholding strategy to classify 3D inter-

actions by their dynamic contact frequencies across the three

cellular states (Figures 3A–3D). To minimize false positives, we

required that interaction scores cross the threshold boundaries

in both replicates for a given biological condition. Moreover,

we iteratively defined thresholds to achieve an empirical False

Discovery Rate (eFDR) of <10% when applied to simulated 5C
614 Cell Stem Cell 18, 611–624, May 5, 2016
replicates (Figures 3E–3H, Figures S3B and S3C, Supplemental

Experimental Procedures). Upon application of our classification

scheme, we uncovered several dynamic interaction classes

among ESC, NPC, and iPSC cellular states (Figures 3I and 3J),

including: (1) 537 interactions present in ESCs, lost in NPCs,

and reacquired upon reprogramming (purple class) (Figure 3K);

(2) 3,004 interactions present only in ESCs and not reprog-

rammed (red class) (Figure 3L); (3) 5,043 interactions absent in

ESCs, acquired upon differentiation, and lost in iPSCs (green

class) (Figure S3D); (4) 1,708 interactions present only in

iPSCs (orange class) (Figure S3E); (5) 148 interactions that

are high in ESCs and NPCs and not present in iPSCs (gold

class) (Figure S3F); and (6) 282 interactions absent in ESCs,

acquired in NPCs, and residually connected in iPSCs (blue

class) (Figure S3G). Notably, we found that the sensitive

detection of these interaction classes, particularly those that

distinguish iPSCs from ESCs, was contingent upon the resolu-

tion and read depth afforded by the 5C approach (Figures S3H

and S3I).

Importantly, we observed that themajority of high-count pixels

were spatially adjacent to each other in our Distance-Corrected

Interaction Score heatmaps and appear to form larger clusters of

enriched 3D contact (Figures 3K–3L and 3N, Figures S3D–S3G).

To ensure that our approach was not inflating the number of

significant interactions, we clustered adjacent pixels that were

similarly classified, resulting in a total of only 1,248 unique inter-

actions across three cellular states in our 5C regions (�7.5 Mb)

(Figure 3M). Our clustering approach is similar to the methodol-

ogy employed by Aiden and colleagues for high-resolution Hi-C

data (Rao et al., 2014). We emphasize two important points

regarding the 3D interaction classes called in this study: (1)

the interactions represent both specific looping contacts and



subTAD boundaries that are dynamic across three cellular states

and (2) rather than a traditional peak calling approach in just one

cell type, we are reporting seven classes of long-range interac-

tions called across three cellular states with a focus on the re-

gions of the genome that are most likely to undergo dynamic

restructuring during the reprogramming process. Overall, these

results indicate that chromatin architecture is highly dynamic

during cell fate transitions, with unique folding classes emerging

during the reprogramming process.

Pluripotency Genes Form Interactions that Can
Successfully Reprogram
We next set out to explore the biological relevance of our dy-

namic interaction classes. We utilized a series of integrative

computational approaches to elucidate the underlying relation-

ships among (1) fine-scale chromatin folding, (2) gene expres-

sion, (3) histonemodifications characteristic of cell-type-specific

regulatory elements, and (4) binding profiles of the architectural

protein CTCF (Tables S1, S3, and S4).

We first investigated the interactions that were present in

ESCs, lost in NPCs, and reconnected during reprogramming

(ESC-iPSC; purple class) (Figure 4A). We noticed that the Sox2

gene formed a strong 3D interaction with a pluripotent enhancer

element �120 kb downstream marked by a large domain of

H3K4me1/H3K27ac in ESCs (Figure 4B). Upon differentiation,

the Sox2-pluripotent enhancer interaction disassembled in

parallel with loss of H3K27ac signal and then subsequently reas-

sembled in iPSCs (Figures 4B and 4C). We also identified ESC-

iPSC (purple class) interactions between the Oct4/Pou5f1

gene and a putative enhancer element�20 kb upstreammarked

by ESC-specific H3K4me1/H3K27ac (Figure 4D). As expected

given the pluripotent properties of our iPSC clone, the Oct4-

enhancer interaction breaks apart in NPCs and reconnects again

in iPSCs (Figures 4D and 4E). We next quantitatively assessed

the enrichment of a wide range of genomic elements in the

ESC-iPSC class of successfully reprogrammed 3D interactions.

Consistent with previous reports (Apostolou et al., 2013) and

our qualitative observations, pluripotency genes and putative

ESC-specific enhancers were significantly enriched at the base

of ESC-iPSC interactions (Figure 4F). Together, these results

indicate that pluripotency genes can form long-range connec-

tions with ESC-specific enhancer elements and that these inter-

actions can reprogram in iPSCs.

To explore the functional significance of fully reprogrammed

interactions, we next conducted genome-wide RNA-seq anal-

ysis in ESCs, NPCs, and iPSCs. We examined Oct4 and Sox2

gene expression after normalization among libraries to account

for any potential batch effects and differences in sequencing

depth (Figures S4A–S4D; Table S3, Table S5, and Table S6).

Unexpectedly, despite reconnection with target pluripotent en-

hancers, Sox2 expression was markedly lower than target ESC

expression levels (Figure 4G), whereas Oct4 expression was

more than 2-fold higher than target ESC expression levels (Fig-

ure 4H). Our observations highlight the importance of further

understanding the relationship between genome folding and

expression and led us to question if more global architectural

connections around these pluripotent enhancer-promoter inter-

actions could be linked to inaccurately reprogrammed gene

expression levels in iPSCs.
Some Pluripotency Genes Reconfigure into New NPC
Interactions that Remain Persistent in iPSCs
We next sought to understand larger-scale chromatin folding

patterns around Sox2 (Figure 5A). We hypothesized that chro-

matin architecture dynamics surrounding the short-range

enhancer-promoter interaction might impact the incompletely

reprogrammed Sox2 expression in our iPSC clone. Unexpect-

edly, we observed that Sox2 is also engaged in NPC-iPSC

(blue class) interactions, which are classified by (1) absence of

connection in ESCs, (2) acquisition of connection in NPCs, and

(3) residual tethering in iPSCs (Figures 5A and 5B). In NPCs,

the Sox2-pluripotent enhancer interaction breaks apart and the

gene forms long-range contacts with two distal NPC-specific

enhancers marked by NPC-specific H3K27ac/H3K4me1.

Intriguingly, although the Sox2-pluripotent enhancer interaction

is reassembled (purple box), the gene also remains partially teth-

ered to the NPC-specific enhancer in iPSCs (blue box) (Fig-

ure 5A). We observed a similar phenomenon at the Klf4 locus,

where the Klf4 gene is highly expressed in ESCs and interacts

with a putative ESC-specific enhancer element marked by

ESC-specific H3K4me1/H3K27ac �75 kb upstream of the

gene (Figures S5A–S5D). In NPCs, Klf4 disconnects from its

pluripotent enhancer and engages with a downstreamNPC-spe-

cific enhancer (Figures S5E and S5F). In iPSCs, Klf4 retains its

interaction with the NPC-specific enhancer (blue box) while

also partially re-tethering to its target pluripotent enhancer (pur-

ple box) (Figure S5F).

We hypothesized that the dual tethering of Sox2/Klf4 genes

to their target ESC-specific pluripotent enhancers and their de-

commissioned NPC-specific enhancers might lead to inaccurate

reprogramming of proper expression levels in our iPSC clone. As

a first step toward testing this hypothesis, we cultured our iPSC

clone under 2i/LIF conditions to promote a naive, ground state of

pluripotency and ensure morphological/phenotypic uniformity

across the population (Marks et al., 2012; Ying et al., 2008). Strik-

ingly, we noticed that 2i/LIF culture of iPSCs resulted in (1) loss of

the Sox2- or Klf4-NPC enhancer (blue class) interactions, (2) a

further amplification in strength of the Sox2- or Klf4-pluripotent

enhancer (purple class) interactions, and (3) a fine-tuning of

Sox2 or Klf4 expression to ESC levels (Figures 5A and 5C–5D,

Figures S5E and S5F). These results indicate that 2i/LIF

conditions are capable of untethering persistent somatic cell

chromatin architecture in a population of iPSCs and restoring

inaccurately reprogrammed gene expression to levels equivalent

to those found in V6.5 ESCs. Future causative studies will be

necessary to further dissect the link among architectural persis-

tence, naive versus primed pluripotency, and precise gene

expression levels during reprogramming.

We then set out to further understand the mechanistic basis

of NPC-iPSC (blue class) interactions. Quantitative enrichment

analysis revealed three key genomic annotations enriched at

the base of NPC-iPSC contacts: (1) ESC-specific genes, (2)

NPC-specific CTCF, and (3) constitutive CTCF (Figure 5E). We

then computed ‘‘sided’’ enrichments by accounting for the pres-

ence/absence of genomic annotations in both anchoring loci at

the base of the NPC-iPSC interactions (see schematic, Fig-

ure 5F). Consistent with our qualitative observations, ESC-spe-

cific genes most significantly contact NPC-specific enhancers

when located at the base of NPC-iPSC interactions (Figure 5F).
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We note that Sox2 and Klf4 are classified as ESC-specific genes

in our study due to their markedly increased expression in ESCs

versus NPCs. However, both genes are still expressed at levels

at least 8-fold higher than background in NPCs. Together, these

results led us to hypothesize that genes with developmental

roles in both ESCs and NPCs, but regulated by different en-

hancers in the two cellular states, might be particularly suscep-

tible to inappropriate tethering to off-lineage enhancers in iPSCs.

Our quantitative enrichment analyses also indicated that ESC-

specific genes formed significant 3D connections with NPC-spe-

cific and constitutively bound CTCF sites (Figures 5E and 5F).

Consistent with this quantitative result, we noticed a constitu-

tively bound CTCF site at the base of the Sox2 NPC-specific

enhancer (Figure 5A) and an NPC-specific CTCF site at the

base of the Klf4NPC-specific enhancer (Figure S5F), suggesting

that CTCF might work together with enhancers to facilitate 3D

connections to the correct target gene(s). To understand how

CTCF binding might be altered during reprogramming, we per-

formed CTCF ChIP-qPCR across all five of our cellular states.

We queried CTCF occupancy levels in the NPC-specific and

ESC-specific enhancers (Figure 5A, blue and red stars, respec-

tively) at the Sox2 locus. We found that the NPC-specific

enhancer remains constitutively bound by CTCF in ESC, NPC,

iPCS, ESC+2i, and iPSC+2i conditions (Figure 5G, left). By

contrast, the ESC-specific enhancer exhibited high CTCF in

ESCs, loss of binding in NPCs, sustained low CTCF occupancy

in iPSCs, and subsequent restoration of occupancy in 2i/LIF

(Figure 5G, right).

Intriguingly, CTCF binding patterns correlate with the changes

in chromatin architecture around Sox2. In ESCs, the constitutive

CTCF site interacts with the ESC-specific CTCF site, resulting in

spatial co-localization of the ESC- and NPC-specific enhancers

(Figure 5A, red box). Loss of CTCF binding at the ESC-spe-

cific enhancer correlates with disconnection of the enhancer-

enhancer interaction in NPCs. In parallel, the constitutive CTCF

site at the NPC-specific enhancer forms a strong NPC-iPSC

(blue class) interaction with the Sox2 gene (Figure 5A, blue

box). We posit that the Sox2-NPC-enhancer interaction remains

tethered in iPSCs because CTCF does not fully rebind to the

ESC-specific enhancer (Figure 5G, right). In support of this

idea, 2i/LIF leads to (1) reacquisition of CTCF binding at the

ESC-specific enhancer, (2) reconnection of the interaction be-

tween both ESC-specific and NPC-specific enhancers, and (3)
Figure 3. Genome Architecture Can Be Classified into Several Distinct

(A–C) Scatterplot comparison of distance-corrected interaction scores between (

are displayed as blue lines. For pairwise plots, cell-type-specific, invariant, and

shading, respectively.

(D) 3D scatterplot of distance-corrected interaction scores for cellular states in wh

are indicated by color (red, ESC only; green, NPC only; orange, iPSC only; gold,

false discovery rates computed from simulated data in (E)–(G) are reported for e

(E–G) Scatterplots of Distance-Corrected Interaction Scores from simulated repli

interactions that cross pre-established thresholds in the simulated data versus t

(H) 3D scatterplot of distance-corrected interaction scores for simulated libraries

(I) Number of interactions called significant in each cell-type-specific interaction

(J) Schematic illustrating the 3D interaction behavior for each interaction class.

(K and L) Zoomed-in heatmaps of distance-corrected interaction scores for sp

Classified interaction pixels are outlined in green.

(M) Number of interactions called significant for each 3D classification after clus

(N) Depiction of all interactions called significant in the Sox2 region. Each interac
abrogation of the Sox2-NPC-specific enhancer interaction.

These observations are consistent with aworkingmodel in which

‘‘persistent-NPC’’ interactions can remain in iPSCs when some

developmentally regulated genes are tethered to NPC-specific

enhancers, possibly at constitutive or NPC-specific CTCF sites.

We highlight that somatic cell-specific elements were not spe-

cifically enriched in NPC-iPSC interactions (Figures S6A–S6C).

For example, NPC-specific genes and enhancers were primarily

enriched in NPC (green class) interactions only, supporting our

finding that it is ESC-specific genes, particularly those that

remain somewhat active in NPCs, that are redirected into

NPC-iPSC contacts. An example illustrating this idea can be

found at the Olig1 and Olig2 genes that are expressed in an

NPC-specific manner and equivalently form NPC (green class)

interactions only with a downstream NPC-specific enhancer

(Figures S6D and S6E). Expression of Olig1 and Olig2 is lost in

parallel with loss of the green class 3D interaction. Together,

these results support the intriguing possibility that ESC-specific

genes that remain partially active in NPCs form new interactions

with somatic cell-specific enhancers during differentiation and

that these contacts can remain tethered as a form of archi-

tectural persistence in iPSCs. Finally, we note that 5C

is performed on a population of millions of cells, we cannot

distinguish between the possibilities that (1) pluripotency genes

simultaneously form both ESC-iPSC and NPC-iPSC contacts in

individual cells and (2) pluripotency genes form two different sets

of interactions in distinct ESC-like subpopulations.

Pluripotent Interactions that Do Not Reprogram Display
Dynamic CTCF Occupancy
Finally, we explored the interactions that are present in ESCs and

lost in NPCs but do not reconnect in iPSCs (red group, Figures

6A–6B, Figures S7A and S7B). A noteworthy illustration of these

poorly reprogrammed interactions is found at the Zfp462

gene (highlighted in green, Figure 6A), which interacts with a

downstream putative ESC-specific enhancer element in ESCs.

Zfp462 expression is reduced in NPCs in parallel with loss of

H3K27ac at the putative downstream enhancer and loss of the

interaction. By contrast to the previously discussed ESC-iPSC

(purple) group, this gene-enhancer interaction is not reas-

sembled in iPSCs. Similarly, the genes Mis18a and Urb1 form

interactions in ESCs that are not reprogrammed (highlighted

in yellow and green, respectively; Figure S7A). Together, these
Dynamic Groups during Cell Fate Transitions

A) ESCs and NPCs, (B) ESCs and iPSCs, and (C) NPCs and iPSCs. Thresholds

background interactions are represented by blue, gray, and brown colored

ich both replicates cross the thresholds displayed in (A)–(C). Interaction classes

ESC-NPC; purple, ESC-iPSC; blue, NPC-iPSC; black, background). Empirical

ach classification.

cates. Empirical false discovery rates were computed based on the number of

he real data.

that cross the thresholds displayed in (A)–(C) and (E)–(G).

class.

ecific (K) ESC-iPSC (purple class) and (L) ESC only (red class) interactions.

tering directly adjacent 4 kb bins.

tion is outlined by the corresponding classification color.

Cell Stem Cell 18, 611–624, May 5, 2016 617



Figure 4. Pluripotency Gene-Enhancer Interactions Can Be Re-established in iPSCs

(A) Schematic illustrating the ESC-iPSC (purple) interaction class.

(B and D) Relative contact frequency heatmaps (top) and zoomed-in distance-corrected interaction score heatmaps (bottom) highlighting key ESC-iPSC in-

teractions (purple class) between (B) Sox2 and (D)Oct4 genes and their target enhancers. Heatmaps are overlaid on ChIP-seq tracks of H3K27ac and H3K4me1

in ESCs and NPCs.

(C and E) Distance-corrected interaction score changes at (C) the Sox2-enhancer interaction and (E)Oct4-enhancer interaction among ESCs, NPCs, and iPSCs.

Error bars represent the standard deviation across two 5C replicates.

(F) Fold enrichment of cell-type-specific regulatory elements in ESC-iPSC (purple class) interactions compared to the enrichment expected by chance across the

genome. Color bar represents fold change enrichment over background (blue, depletion; red, enrichment). p values are computed with Fisher’s Exact test and

listed in each bin.

(G and H) Normalized gene expression is plotted for (G) Sox2 and (H) Oct4 genes. Error bars represent standard deviation across two RNA-seq replicates.
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Figure 5. Pluripotency Genes Can Exhibit ‘‘Persistent NPC-like’’ Folding Patterns in iPSCs

(A) Relative contact frequency heatmaps (top) and zoomed-in distance-corrected interaction score heatmaps (bottom) highlighting anNPC-iPSC interaction (blue

class) around the Sox2 gene. Heatmaps are overlaid on ChIP-seq tracks of H3K27ac and CTCF in ESCs and NPCs.

(B) Schematic illustrating the NPC-iPSC (blue) interaction class.

(C) Distance-corrected interaction score changes at an NPC-iPSC interaction around the Sox2 gene among ESC, NPC, iPSC, ESC+2i, and iPSC+2i conditions.

Error bars represent standard deviation across two 5C replicates.

(D) Normalized expression for the Sox2 gene. Error bars represent standard deviation across two RNA-seq replicates.

(E and F) Fold enrichment of cell type-specific regulatory elements in NPC-iPSC (blue class) interactions compared to the enrichment expected by chance across

the genome. p values are computed with Fisher’s Exact test and listed in each bin. (E) Enrichment for any given genomic annotation at the base of NPC-iPSC

interactions. (F) Enrichment for any given pairwise combination of genomic annotations in the two anchoring bins at the base of NPC-iPSC interactions.

(G) Relative ChIP-qPCR enrichment of CTCF binding at the NPC-iPSC interaction (left, denoted by blue star in A) and ESC only interaction (right, denoted by red

star in A). Error bars represent SD across three technical replicates.
genomic loci reveal a class of interactions that are refractory to

reprogramming in iPSCs.

To investigate the mechanistic basis for poorly reprogrammed

(red class) interactions, we again looked for possible dynamic

CTCF binding. We noticed that genomic loci where CTCF is
bound in ESCs, but severely depleted in NPCs, were preferen-

tially located at the base of poorly reprogrammed interactions

(green boxes; Figures 6A and S7A). Consistent with this observa-

tion, ESC-specific CTCF sites were significantly enriched in ESC

only (red class) interactions (Figures 6C and 6D). ChIP-qPCR
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Figure 6. Interactions that Do Not Reprogram Display Poorly Reprogrammed CTCF Occupancy

(A) Relative contact frequency heatmaps (top) and zoomed-in distance-corrected interaction score heatmaps (bottom) highlighting an ESC only (red class)

interaction at ESC-specific CTCF binding sites at the Zfp462 gene (indicated in green). Heatmaps are overlaid on ChIP-seq tracks of H3K27ac and CTCF in ESCs

and NPCs.

(B) Schematic illustrating the ESC only (red class) interactions.

(C) Fraction of ESC only (red class) interactions enrichedwith distinct cell type-specific regulatory elements compared to the expected enrichment in background.

p values are computed with Fisher’s Exact test and listed in each bin.

(D) Bar plot displaying the fraction of each interaction class containing ESC-specific CTCF binding sites compared to the expected background fraction. Fisher’s

Exact test: *p = 2.06016e�21; **p = 0.000541696.

(E) Distance-corrected interaction score changes at an ESC only interaction around the Zfp462 gene among ESC, NPC, iPSC, ESC+2i, and iPSC+2i conditions.

Error bars represent standard deviation across two 5C replicates.

(F) Zfp462 gene expression among ESC, NPC, iPSC, ESC+2i, and iPSC+2i conditions. Error bars represent standard deviation across two RNA-seq replicates.

(G) Aggregate distance-corrected interaction score changes among ESC, NPC, iPSC, ESC+2i, and iPSC+2i conditions for loci anchoring red class.

(H) Relative ChIP-qPCR enrichment of CTCF binding at the ESC only interaction (denoted by blue star in A). Error bars represent SD across three technical

replicates.
analysis of CTCF occupancy revealed consistent depletion of

CTCF in our iPSC clone compared to ESCs (Figures 5G and

6H, Figure S7G). Importantly, culture of our iPSC clone in 2i/

LIF media resulted in (1) reacquisition of the red group interac-
620 Cell Stem Cell 18, 611–624, May 5, 2016
tions, (2) re-establishment of CTCF occupancy, and (3) restora-

tion of gene expression levels in iPSCs (Figures 6E–6H, Figures

S7C–S7G). Corroborating locus-specific observations, a global

analysis of red class interactions demonstrated a marked



Figure 7. Pluripotency Genes Can Be Hyperconnected in iPSCs

Connectivity of distinct regulatory elements in ESCs, NPCs, and NPC-derived

iPSCs. (A) ESC-specific enhancers; (B) ESC-specific genes; (C) NPC-specific

enhancers; (D) NPC-specific genes; (E) poised enhancers; (F) invariant CTCF;

(G) ESC-specific CTCF; (H) NPC-specific CTCF. (I) Schematic illustrating a

model of the ‘‘hyperconnectivity’’ of certain pluripotency genes in our NPC-

derived iPSC clone. Key ESC-specific genes (denoted by colored arrows)

display the ability to reprogram their connections with ESC-specific en-

hancers (denoted by green/blue ‘‘transcription factor’’ binding sites) and

retain remnants of their somatic connections. This intermediate architectural

state correlates with inaccurate reprogramming of gene expression levels

(represented by colored ‘‘±’’) and can be fully restored upon culture in 2i/LIF

media.
increase in interaction score upon the addition of 2i/LIF media

to iPSCs (Figure 6G). On the basis of these results, we posit

that the loss of CTCF binding at critical developmentally regu-

lated loci can be inefficiently restored during a cell fate transition

like somatic cell reprogramming.

Somatic Elements Are Disconnected and Pluripotent
Genes Are Hyperconnected in our iPSC Clone
We hypothesized that distinct types of regulatory elements

exhibit differential connectivity patterns as ESCs transition

to NPCs and back to iPSCs. To address this hypothesis, we

computed a ‘‘connectivity’’ metric for each class of genomic

element in each of the three cellular states. ESC-specific en-

hancers lose their connectivity in NPCs and then reconnect in

iPSCs (Figure 7A). Intriguingly, ESC-specific genes become
increasingly more connected upon differentiation and subse-

quent reprogramming (Figure 7B). By contrast, NPC-specific

genes/enhancers increase connectivity in NPCs, but then

resume ground state ESC-like connectivity in iPSCs (Figures

7C and 7D). Poised enhancers and invariant CTCF sites display

minor differences in connectivity across the three cellular states

(Figures 7E and 7F), whereas ESC-specific CTCF sites lose their

interactions upon differentiation and only partially gain back con-

nectivity in iPSCs (Figure 7G). NPC-specific CTCF sites increase

in connectivity in NPCs and then partially resume their discon-

nected state in iPSCs (Figure 7H).

Overall, our results support a model in which somatic cell

regulatory elements reconfigure to a ground connectivity state

during reprogramming, whereas pluripotency genes (particularly

those that retain a low level of activity in NPCs) can be ‘‘hyper-

connected’’ in our iPSC clone due to persistent cell-of-origin

interactions (Figure 7I). We hypothesize that persistent-NPC

and poorly reprogrammed interactions contribute to inaccurate

reprogramming of gene expression levels. Consistent with this

idea, 2i/LIF can erase persistent-NPC interactions, restore

poorly reprogrammed interactions, and re-establish precise

ESC-like expression levels in our iPSC clone.

DISCUSSION

Understanding the molecular mechanisms governing somatic

cell reprogramming is of paramount importance to our knowl-

edge of cell fate commitment and the use of iPSCs for regener-

ative medicine applications. Mechanistic studies have primarily

focused on profiling gene expression and classic epigenetic

modifications at intermediate stages in the reprogramming pro-

cess (Koche et al., 2011; Polo et al., 2012; Soufi et al., 2012;

Stadtfeld et al., 2008). However, the molecular roadblocks that

impede the efficiency and timing of epigenome resetting in

iPSCs are just beginning to emerge. Here we examine a unique

aspect of reprogramming: the higher-order folding of chromatin

in the 3D nucleus. We demonstrate that iPS genome architecture

at the sub-Mb scale within TADs can be imperfectly rewired dur-

ing transcription factor-mediated reprogramming.

Recent studies focusing on individual loci (e.g.,Nanog orOct4)

reported that pluripotency genes can re-establish long-range

connections with their target enhancers in iPSCs (Apostolou

et al., 2013; de Wit et al., 2013; Denholtz et al., 2013; Wei

et al., 2013; Zhang et al., 2013a). Motivated by the need to under-

stand how chromatin unfolds/refolds more generally in iPSCs,

we created high-resolution maps of chromatin architecture in

Mb-sized regions around developmentally regulated genes.

Consistent with previous reports, we observe that many pluripo-

tency genes interact with ESC-specific enhancers in ESCs;

these interactions break apart in NPCs and then reassemble in

iPSCs. Additionally, we find that somatic cell interactions be-

tween NPC-specific genes and NPC-specific enhancers gener-

ally disconnect in iPSCs. Thus, our data confirm and extend

several known locus-specific principles of genome folding dur-

ing reprogramming.

We also uncover new classes of chromatin interactions that do

not behave in the expected manner. We identified a small subset

of NPC-iPSC (blue class) interactions representing persistent

chromatin folding patterns from the somatic cell of origin in
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iPSCs. Unexpectedly, we find that some key pluripotency genes

can form new 3D connections in NPCs that remain tethered in

our iPSC clone. For example, Klf4 and Sox2 are dually tethered

to their target ESC-specific enhancers and their decommis-

sioned NPC-specific enhancers in iPSCs. We posit that this

rare but intriguing form of ‘‘architectural persistence’’ might be

causally linked to inaccurate reprogramming of target gene

expression levels in certain iPSC clones. In support of this work-

ing model, we find that 2i/LIF conditions are capable of untether-

ing persistent somatic cell chromatin architecture and restoring

the inaccurately reprogrammed expression to levels equivalent

to those found in a genetically comparable ESC line. Notably,

we highlight that NPC-specific genes/enhancers form contacts

in NPCs that subsequently disassemble in iPSCs, suggesting

that somatic genes are not driving the architectural persistence

in iPSCs. These results agree with previous studies suggesting

that somatic cell gene expression is downregulated during the

initiation phase of reprogramming and precedes the reactivation

of the pluripotency network (Polo et al., 2012). We favor a model

in which reconfiguration of higher-order chromatin topology

could be a potential rate-limiting step in the reprogramming

process as a result of architectural persistence or incomplete

architectural reprogramming (discussed below) blocking the

formation of fully reprogrammed iPSCs (Buganim et al., 2012;

Tanabe et al., 2013).

CTCF is a key player in the organization of the 3D genome and

anchors the base of a large number of long-range interactions

in ESCs (Dixon et al., 2012; Rao et al., 2014; Handoko et al.,

2011; Phillips-Cremins et al., 2013). Here we provide a new link

between CTCF and reprogramming. We identify a new class of

chromatin interactions that are high in ESCs, break apart in

NPCs, and are not fully reconfigured in iPSCs. Importantly, we

find that these poorly reprogrammed interactions often contain

ESC-specific CTCF binding sites that lose occupancy in NPCs

and do not reacquire full binding in our iPSC clone. CTCF has

largely stable occupancy patterns during development, with

60%–90% of sites remaining bound to the genome between

cell types (Kim et al., 2007). Thus, we speculate a model in which

CTCF binding is difficult to lose during differentiation, but once

occupancy is abolished it is inefficiently re-established during

reprogramming. Importantly, DNA methylation is refractory to

CTCF binding (Bell and Felsenfeld, 2000), suggesting a possible

link between poorly reprogrammed chromatin contacts and pre-

viously reported sources of cell-of-origin epigenetic persistence

(Kim et al., 2010; Polo et al., 2010). Indeed, because ESCs

cultured in 2i/LIF display global hypomethylation (Ficz et al.,

2013; Habibi et al., 2013), we speculate that the interplay

between CTCF and dynamic DNA methylation might serve as

a mechanism underlying our observation that 2i/LIF media

can fully restore CTCF occupancy and poorly reprogrammed

interactions.

Epigenetic and transcriptional signatures are generally reset

in fully reprogrammed iPSCs cultured under optimal conditions

(Cahan et al., 2014; Stadtfeld et al., 2010). However, variations

in epigenetic profiles among iPSC clones have been attributed

to reprogramming method, passage number, genetic back-

ground, or laboratory-to-laboratory procedural discrepancies

(Bock et al., 2011; Polo et al., 2010). Therefore, we sought to

confirm that our observations were truly linked to inefficiencies
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in the reprogramming of our iPSC clone, and not experimental

artifacts due to (1) residual somatic cells in our iPSC population

or (2) laboratory-specific culture conditions. Importantly, Ho-

chedlinger and colleagues have extensively characterized the

iPSC clone used in this manuscript for its pluripotent properties

(Eminli et al., 2008). Additionally, our iPSC clone was cultured

to >15 passages in serum+LIF-containing growth conditions

not amenable to NPC proliferation/survival. Finally, known NPC

markers are not upregulated in our iPSC population versus

ESCs (Figures S6E–S6G). Thus, we see no evidence of contam-

inating NPCs in our iPSCs. Although somatic cells are absent, we

cannot rule out the possibility that there could be a gradient of

pluripotent properties (e.g., a continuum between naive and

primed pluripotency) across single cells within our fully reprog-

rammed iPSC clonal population. Because we are conducting

population-based assays, we would detect all interactions that

exist across the different pluripotent states. Consistent with

this possibility, we see that conversion of the population to a

uniform, naive pluripotent state with 2i/LIF media abrogates

architectural persistence interactions and reinstates poorly re-

programmed interactions. Additionally, although we subjected

our iPSCswith or without 2i/LIF to the same number of passages

(p > 15), we cannot rule out the possibility that further long-term

passaging might also resolve any mis-wired chromatin interac-

tions. Noteworthily, these results raise the interesting possibility

that an iPSC clone capable of creating transgenic micemight still

exhibit some level of architectural heterogeneity that can be fully

resolved with 2i/LIF media. Exciting lines of future inquiry will

query genome folding in higher passages, alternative reprogram-

ming conditions, tetraploid-complementation verified iPSCs,

and a range of iPSC clones derived from multiple somatic cell

lineages.

In parallel with this manuscript, de Laat, Graf, and colleagues

published a genome-wide analysis of chromatin architecture in

iPSCs derived from four independent somatic cell lineages

(Krijger et al., 2016). The authors take a top-down approach in

which they generate genome-wide, albeit low-resolution, Hi-C

maps suited to query higher-order levels of genome organization

(i.e., A/B compartments, TADs, and nuclear positioning of TADs).

Importantly, they demonstrate that A/B compartments are

largely reset during reprogramming. Moreover, consistent with

the leading idea that TADs are largely invariant among cell types

(Dixon et al., 2012), TAD boundaries remained for the most part

consistent among iPSC clones and ESCs. At the level of sub-

Mb-scale genome folding, however, the design of the two

studies is such that different findings arise. Here we take a

bottom-up approach in which we create high-resolution, high-

complexity maps focused on fine-scale chromatin folding dy-

namics within TADs around developmentally regulated genes.

Given the sensitivity and statistical power afforded by the 5C

assay, it is not surprising that we detect a larger number of dy-

namic subTAD boundaries and looping interactions than re-

ported in Krijger et al. during the transition among ESC, iPSC,

and NPC cellular states. It is noteworthy that when we increase

our bin size from 4 kb up to 300 kb (Figure S3H), we can recapit-

ulate the author’s high level of correlation between the ESCs and

iPSCs (Figure S3I). Krijger et al. and our manuscript offer com-

plementary viewpoints into genome architecture dynamics

across a wide range of length scales and resolutions during



reprogramming. Together, the findings from these studies are

consistent with our working hypothesis that architectural

changes causally linked to developmentally relevant alterations

in gene expression occur within TADs at the sub-Mb scale.

Overall, we present high-coverage, fine-scale maps of chro-

matin folding within TADs in iPSCs and use our maps to uncover

several new organizing principles for genome folding during re-

programming. We find that different cell type-specific regulatory

elements exhibit contrasting 3D connectivity patterns as cells

switch fates in forward and reverse directions. A deeper under-

standing of the role for chromatin folding at each step in the re-

programming process is of critical importance toward the use of

iPSCs for disease modeling and regenerative medicine pur-

poses. Future work combining high- and low-resolutionmapping

approaches will provide a comprehensive view of genome

folding across length scales and cellular states to create a cata-

log of ‘‘hotspots’’ of incomplete architectural reprogramming to

address whether specific somatic cell types are more or less

resistant to topological changes.

EXPERIMENTAL PROCEDURES

Cell Culture, Differentiation, and Reprogramming

V6.5 ESCs, primary NPCs, and NPC-derived iPSCs were cultured as

described in the Supplemental Experimental Procedures. Briefly, ESCs were

expanded on Mitomycin-C inactivated MEFs under standard pluripotent con-

ditions and passaged onto feeder-free gelatin-coated plates before fixation.

Primary NPCs were isolated from whole brains of P1 129SvJae 3 C57BL/6,

Sox2-eGFP mice and cultured as neurospheres for two passages before

adherent culture and fixation. The iPSC clone used in this paper was derived

and characterized in Eminli et al. (2008) and expanded/cultured for use in

this study to >15 passages with or without 2i/LIF media as described in the

Supplemental Experimental Procedures.

Generation and Analysis of 5C Libraries

5C libraries were generated according to standard procedures described in the

Supplemental Experimental Procedures. Paired-end reads were aligned to a

pseudo-genome consisting of all 5C primers using Bowtie. Interactions were

counted when both paired-end reads were uniquely mapped to the 5C primer

pseudo-genome. Counts were converted to contact matrices for each genomic

regionqueried, processed, normalized,andmodeledasdescribed in theSupple-

mental Experimental Procedures. Customized algorithms for classification of 5C

interactionsand thedownstream integrationof interactionclasseswithChIP-seq

and RNA-seq data are detailed in the Supplemental Experimental Procedures.

RNA-Seq Library Preparation and Analysis

Cells were lysedwith Trizol and total RNAwas extracted as detailed in the Sup-

plemental Experimental Procedures. Samples were prepared for sequencing

using the Illumina TruSeq Stranded Total RNA Library Prep kit with RiboZero

(Illumina RS-122-2202) following the supplier’s protocol and sequenced on

the Illumina NextSeq500. Libraries were analyzed and corrected for any

sequencing depth or batch effect differences with methods described in the

Supplemental Experimental Procedures.

ChIP-Seq Analysis and ChIP-qPCR

A summary of published ChIP-seq libraries re-analyzed in this study is pro-

vided in Table S4. Reads were aligned to mm9 with Bowtie using default pa-

rameters. Only uniquely mapped reads were used for downstream analyses.

ChIP-seq peak calling andChIP-qPCR experiments are detailed in the Supple-

mental Experimental Procedures.
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 Paired-end read mapping and counting 

 Low count primer removal 

 Raw contact matrix visualization 

 Quantile normalization 

 Primer correction 

 Low count fragment-fragment pair removal 

 Contact matrix binning 

 Pseudo-fragment level 5C mapping resolution 

 Identification of bad primer gaps 

 Distance-dependence normalization 

 Probabilistic model fitting and distance-corrected interaction scores 

 GC content bias investigation 

 Comparison of 5C analysis pipeline to alternative approaches 

Principal component analysis 

Classification of cell type-specific 3-D interactions 

Empirical false discovery rate calculation 

Justification of strategy 

Model generation – mean parameter estimation 

Model generation – estimating the mean-variance relationship 

Model generation – variance parameter estimation 

Simulations 

Monte Carlo, p-value calculation, classification 

Computing the false discovery rates for each 3-D interaction class 

6 Sample vs 10 Sample 5C data processing 



Interaction adjacency clustering 

ChIP-seq peakcalling 

Parsing ES-specific and NPC-specific genes 

Parsing ES-specific and NPC-specific enhancers 

Parsing ES-specific and NPC-specific CTCF sites 

Computing enrichments 

Annotation intersections 

Computing percentage incidence, fold-enrichment above background, and p-values 

Visualizing enrichments 

Computing connectivity 
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Supplemental Figure Captions 

Figure S1 (related to Figure 1).  Progression of 5C data through analysis pipeline. (A-F) Grid showing 

progression of Sox2 region through data processing steps. From top to bottom: (A) raw, (B) quantile 

normalized, (C) primer corrected, (D) binned (4 kb bins; 20 kb smoothing window), (E) distance-

dependence corrected and (F) interaction score computed as -10*log2(p-value) on p-values computed 

from the distance-dependence corrected data after logistic distribution modeling parameterized for 

each genomic region. From left to right: (i) contact probability heatmaps for ES Rep1 and NPC Rep1, (ii) 

boxplots of counts for each primer/bin in the Sox2 region in order of increasing median, (iii) background 

distance-dependence interaction frequency, showing the mean of the counts at distance scales binned 

every 40 kb, (iv) kernel density estimates of the counts probability density. (G) Boxplots of ‘Relative 

contact frequency’ values at 4 kb intervals across the genomic coordinates queried for each 5C region. 

Plots for the Olig1-Olig2 and Nestin regions of ES Rep 1 are shown.  (H) Violin plots showing the 

distribution of log fold enrichment of total cis primer counts over the mean of cis primer counts (x-axis) 

as a function of each primer’s GC content (y-axis). Data for ES Rep 1 is shown at raw, quantile 

normalization and primer correction stages in the analysis pipeline. (I) Heatmaps comparing GC content 

bias in ES Rep1 in pairwise fragment-to-fragment contacts before and after primer correction. Fold 

enrichment is computed within each two-sided GC bin as the sum of the counts for all cis primer-primer 

pairs falling in the GC content range of the bin divided by the expected number of counts for a bin with 

that many primer-primer pairs in it (see Supplemental Experimental Procedures).  

 

Figure S2 (related to Figure 1).  Progression of 5C data through alternative 5C analysis approaches. (A-

D) Grid showing progression of Sox2 region through our previously published analysis pipeline (Phillips-

Cremins et al., 2013). From top to bottom: (A) raw, (B) primer corrected, (C) distance-dependence 

normalized via parametric model described in (Phillips-Cremins et al., 2013) and (D) interaction score 



computed as -10*log2(p-value) on p-values computed with compound normal-lognormal distribution fits 

described in (Phillips-Cremins et al., 2013). From left to right: (i) contact probability heatmaps for ES 

Rep1 and NPC Rep1, (ii) boxplots of counts for each primer/bin in the Sox2 region in order of increasing 

median, (iii) distance dependence curves, showing the mean of the counts at distance scales binned 

every 40 kb, (iv) kernel density estimates of the counts probability density. (E-G) Grid showing 

downstream effects of alternative placement of quantile normalization step within the main 5C analysis 

pipeline. Primer normalized data shown in (B) were binned (E), then quantile normalized (in contrast to 

Figure S1, where quantile normalization is the first step) (F), and finally distance corrected (G). 

 

Figure S3 (related to Figure 3). Methodology for identification of significant 3-D interaction classes. (A-

B) Histograms and empirical cumulative distribution functions (ECDF) of distance-corrected interaction 

frequency values. (A) Distributions of NPC Rep 1 (red) superimposed upon a logistic distribution fit with 

location/scale parameters computed for each region and biological replicate (black). Juxtaposition of 

models illustrates that our distance-corrected data can be modeled with logistic fits. (B) Distributions of 

the two NPC replicates (red and green) plotted alongside the simulated data distribution (blue). 

Simulated data closely approximate 5C data, supporting their utility in computing empirical False 

Discovery Rates. (C) Empirical false discovery rates computed from simulated data reported for each 

classification. FDRs vary slightly depending on which cell-type replicates are used to model parameters 

of the simulations (see Supplemental Experimental Procedures). (D-G) Zoomed-in contact density maps 

for specific (D) NPC only interactions (green class), (E) iPS only interactions (orange class), (F) ES-NPC 

interactions (yellow class), and (G) NPC-iPS interactions (blue class). Classified interaction pixels are 

outlined in green for each interaction class. (H) 5C primer-primer counts data are binned with 

decreasing bin sizes and displayed as contact density heatmaps. From left to right, heatmaps are shown 

for bin sizes of 300 kb, 100 kb, 30 kb and finally the 4 kb with a 20 kb smoothing window used in this 



study. (I) Spearman’s rank correlation coefficient was calculated using the distance-corrected interaction 

frequency data of replicates displayed in (H) at each bin size.  

 

Figure S4 (related to Figures 2, 4, 5, 6).  RNA-seq library normalization and quality control. (A,C) 

Frequency histograms of read counts across all genes for each RNA-seq library before (A) and after (C) 

normalization. (B,D) Cumulative distributions of read counts across all genes for each RNA-seq library 

before (B) and after (D) normalization. (E) Boxplots of the logged normalized counts of genes parsed as 

ES-specific or NPC-specific for each replicate. 

 

Figure S5 (related to Figures 4, 5). The Klf4 gene engages in both ES-iPS (purple class) and NPC-iPS 

(blue class) 3-D interactions. (A) Schematic illustrating the ES-iPS (purple) and NPC-iPS (blue) interaction 

classes. (B) Contact frequency heatmaps (top) and zoomed-in heatmaps of distance-corrected 

interaction scores (bottom) highlighting a key interaction between Klf4 and an upstream enhancer. 

Interaction score heatmaps are overlaid on ChIP-seq tracks of H3K27ac and H3K4me1 in ES cells and 

NPCs. (C) Distance-corrected interaction score changes among ES, NPC and iPS cells at the Klf4-enhancer 

ES-iPS (purple class) interaction. Error bars represent standard deviation across two replicates. (D) 

Normalized gene expression for the Klf4 gene is plotted for ES, NPC and iPS cells, as well as ES and IPS 

cells cultured in 2i media. Error bars represent standard deviation across two replicates. (E) Distance-

corrected interaction score changes at an NPC-iPS interaction around the Klf4 gene among ES, NPC and 

iPS cells. Error bars represent standard deviation across two replicates. (F) Contact frequency heatmaps 

(top) and zoomed-in heatmaps of distance-corrected interaction scores (bottom) highlighting the NPC-

iPS interaction between the Klf4 gene and a downstream NPC-specific enhancer. Plotted similar to (B).  

 



Figure S6 (related to Figure 5). NPC-specific genes and enhancers are enriched in NPC only (green 

class) interactions. (A) Schematic illustrating the NPC only (green) interaction class. (B) Bar plot 

displaying the fraction of each looping class containing NPC-specific enhancers compared to the 

expected background fraction. Fisher’s Exact test: *, P= 3.55182e-58; **, P= 0.00063607.  (C) Bar plot 

displaying the fraction of each looping class containing NPC-specific genes compared to the expected 

background fraction. Fisher’s Exact test: *, P= 1.20143e-86. (D) Zoomed-in heatmaps of distance-

corrected interaction scores highlighting key interactions between the Olig1 and Olig2 genes and nearby 

NPC-active enhancers. Distance-corrected interaction score heatmaps are overlaid on ChIP-seq tracks of 

H3K27ac and CTCF in ES cells and NPCs. (E-G) Normalized gene expression for the Olig1 and Olig2 (E), 

Nestin (F) and Bcan (G) genes are plotted for ES, NPC and iPS cells. Error bars represent standard 

deviation across two replicates.  

 

Figure S7 (related to Figure 6). The Mis18 and Urb1 genes engage in ES only (red class) 3-D interactions 

linked to inaccurately reprogrammed, ES-specific CTCF binding. (A) Contact frequency heatmaps (top) 

and zoomed-in heatmaps of distance-corrected interaction scores (bottom) highlighting ES only 

interactions surrounding the Mis18a and Urb1 genes. Interaction score heatmaps are overlaid on ChIP-

seq tracks of CTCF and Smc1 in ES cells and NPCs. (B) Schematic illustrating the ES only (red) class of 

looping interactions. (C-D) Normalized gene expression for the Mis18a (C) and Urb1 (D) genes are 

plotted for ES, NPC, iPS cells and ES/iPS cells cultured in 2i media. Error bars represent standard 

deviation across two replicates. (E-F) Distance-corrected interaction score changes at Mis18a (E) and 

Urb1 (F) ES-only interactions highlighted on heatmaps with small red boxes in (A). Error bars represent 

standard deviation across two replicates. (G) Relative ChIP-qPCR enrichment of CTCF binding at the ES 

only interaction displayed in (A). CTCF site queried is denoted by red star in (A). Error bars represent SD 

across three technical replicates. 



 

Supplemental Tables 

 

Table S1: Summary of paired-end read alignments for 5C libraries, related to   
Experimental Procedures and Supplemental Experimental Procedures. 

 
 

Library 
Code Replicate Instrument  

 
Lane/Paired 

End Total Reads 

PE1 
Mapped 

Reads 

PE2 
Mapped 

Reads 

ES_1 
 

1 
 
 

Illumina 
Nextseq 

500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

33678848 
33678848 
33418892 
33418892 
33974768 
33974768 
33399920 
33399920 

 

28770023 28505219 

ES_2 
 

2 
 
 

Illumina 
Nextseq 

500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

31551080 
31551080 
31299432 
31299432 
31772324 
31772324 
31309272 
31309272 

 

27875198 27628550 

NPC_1 1 
Illumina 
Nextseq 

500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

27804116 
27804116 
24416680 
24416680 
13862024 
13862024 
17389664 
17389664 

 

18454027 15832156 

NPC_2 2 
Illumina 
Nextseq 

500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 

27793844 
27793844 
24550324 
24550324 
13826704 
13826704 
17240756 

18342888 15617223 



L4_P2 
 

17240756 
 

iPS_1 1 
Illumina 
Nextseq 

500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

23527984 
23527984 
20602800 
20602800 
11619608 
11619608 
14506996 
14506996 

 

15039775 13005171 

iPS_2 2 
Illumina 
Nextseq 

500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

24074808 
24074808 
21329464 
21329464 
11963384 
11963384 
14902364 
14902364 

 

15970612 13768584 

ES_2i_1 1 
Illumina 
Nextseq 

500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

22956884 
22956884 
19862384 
19862384 
11563004 
11563004 
14156912 
14156912 

 

15065438 12571131 

ES_2i_2 2 
Illumina 
Nextseq 

500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

26479112 
26479112 
23469892 
23469892 
13319924 
13319924 
16661424 
16661424 

 

17803279 15151910 

iPS_2i_1 1 
Illumina 
Nextseq 

500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

21352148 
21352148 
18236676 
18236676 
10483824 
10483824 
13062076 
13062076 

 

13147449 11301729 

iPS_2i_2 2 Illumina 
Nextseq 

L1_P1 23812716 15400978 12963765 



500 L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

23812716 
21226860 
21226860 
12105132 
12105132 
15124608 
15124608 

 

 
 
Table S2: Spearman's rank correlation coefficients calculated for distance-dependence corrected 
interaction frequencies of pairs of biological replicates, related to Experimental Procedures. 
 
 
ES_Rep_1             
ES_Rep_2 0.830632           
NPC_Rep_1 0.280142 0.243655         
NPC_Rep_2 0.27191 0.267666 0.767335196       
iPS_Rep_1 0.548705 0.581172 0.302233915 0.374198865     
iPS_Rep_2 0.44135 0.426666 0.456490393 0.492875434 0.678932815   
  ES_Rep_1 ES_Rep_2 NPC_Rep_1 NPC_Rep_2 iPS_Rep_1 iPS_Rep_2 

 
 
Table S3: Summary of paired-end read alignments for RNA-seq libraries, related to   
Experimental Procedures and Supplemental Experimental Procedures. 

 
 

Library 
Code Replicate 

Instrument 
and Number 

of Lanes 

 
Lane/Paired 

End Total Reads Alignment Summary 

ES_1 
 

1 
 
 

Illumina 
Nextseq 500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

63385276 
63385276 
62210488 
62210488 
59599184 
59599184 
59255860 
59255860 

 

Aligned pairs:  47708823 
     of these:   6941410 (14.5%) 
have multiple alignments 
                 1525220 ( 3.2%) are 
discordant alignments 

75.6% concordant pair 
alignment rate. 

ES_2 
 

2 
 
 

Illumina 
Nextseq 500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 

49406568 
49406568 
48742476 
48742476 
46795280 
46795280 
46667840 

Aligned pairs:  24184676 
     of these:   6397683 (26.5%) 
have multiple alignments 
                 5602245 (23.2%) are 
discordant alignments 

38.8% concordant pair 
alignment rate. 



L4_P2 
 

46667840 
 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

28202868 
28202868 
27832228 
27832228 
27903044 
27903044 
27359632 
27359632 

 

Aligned pairs:  15612304 
     of these:   4167968 (26.7%) 
have multiple alignments 
                 3682919 (23.6%) are 
discordant alignments 

42.9% concordant pair 
alignment rate. 

NPC_1 1 Illumina 
Nextseq 500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

34176084 
34176084 
33607532 
33607532 
33839124 
33839124 
33064788 
33064788 

 

Aligned pairs:  16843964 
     of these:   5246902 (31.2%) 
have multiple alignments 
                 4743602 (28.2%) are 
discordant alignments 

35.9% concordant pair 
alignment rate. 

NPC_2 2 Illumina 
Nextseq 500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

32832608 
32832608 
32294456 
32294456 
32521560 
32521560 
31787280 
31787280 

 

Aligned pairs:  19633261 
     of these:   5907437 (30.1%) 
have multiple alignments 
                 2764224 (14.1%) are 
discordant alignments 

52.1% concordant pair 
alignment rate. 

iPS_1 1 Illumina 
Nextseq 500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

66486724 
66486724 
65682424 
65682424 
62943540 
62943540 
62797608 
62797608 

 

Aligned pairs:  30717628 
     of these:   8903977 (29.0%) 
have multiple alignments 
                 7379227 (24.0%) are 
discordant alignments 

36.2% concordant pair 
alignment rate. 



L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

23466568 
23466568 
23169000 
23169000 
23272384 
23272384 
22782364 
22782364 

 

Aligned pairs:  12293064 
     of these:   3617560 (29.4%) 
have multiple alignments 
                 2992072 (24.3%) are 
discordant alignments 

40.1% concordant pair 
alignment rate. 

iPS_2 2 Illumina 
Nextseq 500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

45551664 
45551664 
44876400 
44876400 
43097496 
43097496 
42875224 
42875224 

 

Aligned pairs:  22993950 
     of these:   6316523 (27.5%) 
have multiple alignments 
                 4420192 (19.2%) are 
discordant alignments 

42.1% concordant pair 
alignment rate. 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

29625648 
29625648 
29151848 
29151848 
29348000 
29348000 
28673296 
28673296 

 

Aligned pairs:  16810920 
     of these:   4686563 (27.9%) 
have multiple alignments 
                 3287433 (19.6%) are 
discordant alignments 

46.3% concordant pair 
alignment rate. 

ES_2i_1 1 Illumina 
Nextseq 500 

L1_P1 
L1_P2 
L2_P1 
L2_P2 
L3_P1 
L3_P2 
L4_P1 
L4_P2 

 

59127460 
59127460 
58169908 
58169908 
55872492 
55872492 
55774136 
55774136 

 

Aligned pairs:  42262509 
     of these:   6635919 (15.7%) 
have multiple alignments 
                 2569916 ( 6.1%) are 
discordant alignments 

69.3% concordant pair 
alignment rate. 

 7370792 
7370792 
7260416 
7260416 
7299252 
7299252 
7149924 
7149924 

 

Aligned pairs:   5861538 
     of these:    950297 (16.2%) 
have multiple alignments 
                  370120 ( 6.3%) are 
discordant alignments 
75.5% concordant pair 
alignment rate. 



ES_2i_2 2 Illumina 
Nextseq 500 

 41617840 
41617840 
40991972 
40991972 
39186452 
39186452 
39053336 
39053336 

 

Aligned pairs:  31055590 
     of these:   4668288 (15.0%) 
have multiple alignments 
                 1206653 ( 3.9%) are 
discordant alignments 

74.2% concordant pair 
alignment rate. 

 12881568 
12881568 
12701244 
12701244 
12733836 
12733836 
12471728 
12471728 

 

Aligned pairs:  10705467 
     of these:   1658953 (15.5%) 
have multiple alignments 
                  426422 ( 4.0%) are 
discordant alignments 
81.0% concordant pair 
alignment rate. 

iPS_2i_1 1 Illumina 
Nextseq 500 

 43012836 
43012836 
42257896 
42257896 
40724336 
40724336 
40395388 
40395388 

 

Aligned pairs:  23098024 
     of these:   6101858 (26.4%) 
have multiple alignments 
                 4051057 (17.5%) are 
discordant alignments 
45.8% concordant pair 
alignment rate. 

 7600884 
7600884 
7470076 
7470076 
7525056 
7525056 
7366240 
7366240 

 

Aligned pairs:   4591177 
     of these:   1247317 (27.2%) 
have multiple alignments 
                  821522 (17.9%) are 
discordant alignments 
50.3% concordant pair 
alignment rate. 

iPS_2i_2 2 Illumina 
Nextseq 500 

 45249896 
45249896 
44710976 
44710976 
42713772 
42713772 
42689140 
42689140 

 

Aligned pairs:  31164351 
     of these:   6059475 (19.4%) 
have multiple alignments 
                 2368280 ( 7.6%) are 
discordant alignments 

65.7% concordant pair 
alignment rate. 

 
 
 



Table S4: Summary of external ChIP-seq libraries analyzed in this study, related to Experimental 
Procedures and Supplemental Experimental Procedures. 

 

Antibody Cell 
Type 

Mapped 
Test 

ChIP-Seq 
reads 

Test ChIP 
Reference 

Test 
Sample 
GEO ID 

Control 
Samples 

Mapped 
Control 

ChIP-Seq 
reads 

 
Control 
Sample 
GEO ID 

CTCF 
mES 

(159-2) 9,562,677 
(Stadler et 
al., 2011) GSM747534 

mES 
Whole 

Cell 
Extract 10,202,630 

 
GSM747545 

CTCF 

ES-
derived 

NPC 13,641735 

(Phillips-
Cremins et 
al., 2013) 

 
GSM883647 

 

NPC 
Whole 

Cell 
Extract 14,041,323 

 
GSM883648 

 
H3K4me

1 
 

mES 
(V6.5) 

 
5,707,101 

 

(Meissner 
et al., 
2008) 

GSM281695 
 

V6.5 
Whole 

Cell 
Extract 

803,601 
 

 
GSM307625 

H3K4me
1 

ES-
derived 

NPC 
4,471,210 

 

(Meissner 
et al., 
2008) 

GSM281693 
 

NPC 
Whole 

Cell 
Extract 

4,369,951 
 

 
GSM307617 

 

H3K4me
3 

mES 
(V6.5) 

6,809,878 
 

(Mikkelsen 
et al., 
2007) 

GSM307618 
 

V6.5 
Whole 

Cell 
Extract 

6,008,440 
 

GSM307154, 
GSM307155 

H3K4me
3 

ES-
derived 

NPC 
3,397,613 

 

(Mikkelsen 
et al., 
2007) 

GSM307613 
 

NPC 
Whole 

Cell 
Extract 

4,369,951 
 

 
GSM307617 

 

H3K27ac 
mES 

(V6.5) 
11,128,384 

 

(Creyghton 
et al., 
2010) 

GSM594579 
Rep2 

 

V6.5 
Whole 

Cell 
Extract 14,682,811 

 

GSM307154, 
GSM307155, 
GSM594599 

 

H3K27ac 

ES-
derived 

NPC 
8,831,628 

 

(Creyghton 
et al., 
2010) 

GSM594585 
 

NPC 
Whole 

Cell 
Extract 

14,041,323 
 

 
GSM883648 

 
Table S5: Genes classified as ES-specific, Related to Figures 4, 5, 6 and Supplemental Experimental 
Procedures. 
Attached as separate excel spreadsheet. 
 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM883646
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM281695
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM307625
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM281693
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM307618
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM560341
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM560341
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM307613
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM560341
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM560341


Table S6: Genes classified as NPC-specific, Related to Figures 4, 5, 6 and Supplemental Experimental 
Procedures. 
Attached as separate excel spreadsheet. 
 
Table S7: Interactions selected for representative interaction score barplots, Related to Figures 4, S5, 
5, 6, S7. 
Attached as separate excel spreadsheet. 
 
Supplemental Experimental Procedures 

ES cell culture 

V6.5 ES cells (murine; C57Bl/6 x 129SvJae; male) were purchased from Novus Biologicals. ES cells were 

expanded on Mitomycin-C inactivated MEF feeder layers in media consisting of DMEM, 15% FBS 

(Hyclone), 103 U/mL leukemia inhibitory factor (Millipore), non-essential amino acids (Lifetech), 0.1 mM 

2-mercaptoethanol, 4 mM l-glutamine (Lifetech) and penicillin/streptomycin (Lifetech). Prior to fixation, 

ES cells were passaged onto gelatin-coated, feeder-free plates to remove feeder layer, and fixed at 

approximately 70% confluence. Cells were grown to ~7e6 cells per 15 cm dish at the time of fixation. 

 

Primary NPC isolation 

Neural progenitor cells were isolated from whole brains of newborn 129SvJae x C57/BL6, Sox2-eGFP 

mice and cultured as neurospheres in Neural Stem Cell media: DMEM/F12 media (Invitrogen 12100-046 

and 21700-075) containing 72 mM glucose, 120 mM Sodium Bicarbonate, 5.6 mM Hepes (Sigma H-

0887), 27.5 nM Sodium Selenite (Sigma S-9133), 18 nM progesterone (Sigma P0130), 90 ug/mL Apo-

transferrin (Sigma T1428), 23 ug/mL insulin (Sigma I6634), 100 uM putrescine (Sigma P-7505), 2 mM L-

glutamine (Gibco 25030-081), 1% Pen/Strep (Sigma P0781), 2 ug/mL heparin, 20 ng/mL rhEGF (R&D 

Systems) and 10 ng/mL rhFGF (R&D systems). Neurospheres were passaged every 3-4 days to prevent 

the formation of necrotic cores. After two passages, neurospheres were dissociated with Accutase and 

plated on Poly-D-Lysine Hydrobromide (100 ug/mL, Sigma P7280), and laminin (15 ug/mL, Corning 



354232) coated plates at 60,000 cells/cm2. Cells were fixed with 1% formaldehyde one day after 

adherent plating. 

 

iPS cell culture 

The iPS cells analyzed in this study were reprogrammed from primary NPCs (pNPCs) as described in 

(Eminli et al., 2008). Briefly, pNPCs were transduced with lentiviral vectors to ectopically express Oct4, 

Klf4, and c-Myc (OKM). iPS cells derived from pNPCs were cultured on irradiated MEFs in medium 

consisting of Knock-Out DMEM, 15% FBS, Glutamax, non-essential amino acids, penicillin-streptomycin, 

b-mercaptoethanol and Leukemia Inhibitory Factor (LIF). iPS cells were grown to ~7e6 cells per 15 cm 

dish at the time of fixation. This iPS clone was extensively characterized for its pluripotent properties as 

assessed by (i) high expression of endogenous pluripotency markers (Oct4, Sox2, Nanog), (ii) 

demethylation of Oct4 and Nanog promoters, (iii) in vivo teratoma formation of all three germ layers 

and (iv) generation of chimeric mice (Eminli et al., 2008). 

 

Culture of pluripotent cells in 2i media 

iPS and ES cells were removed from serum-containing media described above and cultured in 2i serum-

free media comprised of 500 mL Knock Out DMEM (Life Technologies # 10829-018), 15% Knockout 

Serum Replacement (Life Technologies #10828), 5 mL N2 supplement (Life Technologies #17502-048), 5 

mL B27 Supplement (Life Technologies #17504-044) , 5 mg/mL BSA (Sigma A9418),  1 mM L-Glutamine 

(Life Technologies # 25030-081), 1% Non-Essential Amino Acids (Millipore #TMS-001-C), 0.1 mM B-

Mercaptoethanol (Life Technologies #21985-023), 1% Penicillin-Streptomycin (Sigma #P0781), 103 

units/mL LIF (Millipore #ESG1107), 3 uM CHIR99021 (Axon Medchem #1386), and 1 uM PD0325901 

(Axon Medchem #1408) (Rais et al., 2013). After two passages on feeder cells, ES and iPS cells in 2i 



media were passaged onto 0.1% gelatin to remove contaminating feeder cells.  Cells were grown to 

~7e6 cells per 15 cm dish at the time of fixation with 1% formaldehyde before 5C. 

 

3C template generation and characterization 

3C templates were produced as previously described (Dekker et al., 2002; Gheldof et al., 2010; Phillips-

Cremins et al., 2013; van Berkum and Dekker, 2009) for ES (n=2), NPC (n=2), iPS (n=2), ES+2i (n=2) and 

iPS+2i (n=2) pellets. Briefly, cells were fixed in base culture media (serum-free) supplemented with 

formaldehyde added to a final concentration of 1%. After 10 minute incubation at room temperature, 

fixation was terminated by adding 2.5M glycine stock to a final concentration of 125 mM glycine. Cross-

linking termination was carried out for 5 minutes at room temperature followed by 15 minutes at 4°C. 

Cells were harvested with silicone scraper and pelleted, washed once with PBS, snap-frozen and stored 

at -80°C until processing. 

Pellets were resuspended in lysis buffer consisting of 10 mM Tris-HCl (pH 8.0), 10 mM NaCl, 

0.2% Igepal CA630 and 1x protease inhibitor (Sigma) in sterile water and incubated on ice for 30 

minutes. Cells were lysed with a dounce homogenizer and washed with NEB2 buffer. SDS was added to a 

final concentration of 0.1% and chromatin was solubilized by incubating at 65°C for 10 minutes. Triton X-

100 was added to quench the SDS, and HindIII digestion was performed overnight at 37°C. The next day, 

the HindIII was inactivated and ligation was performed under dilute conditions at 16°C for 2 hours using 

T4 DNA ligase (Invitrogen) in ligation buffer consisting of 1% Triton X-100, 0.1mg/mL BSA, 1mM ATP, 

50mM Tris-HCl, 50mM NaCl, 10mM MgCl2 and 1mM DTT. After ligation, cross-links were reversed via 

incubation with 63.5µg/mL Proteinase K (Invitrogen) for 4 hours at 65°C, at which point the Proteinase K 

concentration was doubled and the solution was incubated overnight at 65°C. The 3C template DNA was 

then purified via a phenol extraction and a subsequent phenol-choloroform extraction before 

precipitation in ethanol. The resulting DNA pellet was resuspended in TE buffer consisting of 10 mM 



Tris-HCl (pH 8.0) and 1 mM EDTA (pH 8.0), and again purified by a series of phenol-chloroform 

extractions and precipitated in ethanol. The resulting DNA pellet was resuspended in TE buffer and 

treated with 100 ug/mL RNase A for 3 hours at 37°C.  

 

5C primer design 

5C primers were designed at HindIII restriction sites using the my5Csuite primer design tools (Lajoie et 

al., 2009), as described in detail in (Phillips-Cremins et al., 2013).  

  

5C library generation and sequencing 

5C libraries were generated as described previously (Bau et al., 2011; Dostie and Dekker, 2007; Dostie et 

al., 2006; Phillips-Cremins et al., 2013; van Berkum and Dekker, 2009). 600 ng of each 3C template was 

mixed with final concentration 1 fmol of each 5C primer in 1x NEB4 buffer. Solution was incubated at 

55°C for 16 hr to anneal primers to 3C templates. 5C primers annealed to 3C ligation junctions were 

ligated via the addition of 1x Taq ligase buffer containing 10 U Taq DNA ligase. Solution was mixed by 

pipetting and incubated for 1 hour at 55°C. Ligated 5C primers were then selectively amplified via the 

addition of universal forward (T7) and reverse (T3) primers, which anneal to the complementary 

universal primer tails of the 5C primers. 5C libraries (400 ng per library) were prepared for sequencing 

using the NEBNext Ultra DNA Library Prep Kit (NEB # E7370S) and NEBNext Multiplex Oligos for 

Illumina (NEB # E7335S). After ligation of adapters following manufacturer's protocol, nuclease-free 

water was added to bring the reaction volume to 100 uL. Fragments of size ~ 220 bp (100 bp 5C product 

+ 120 bp Illumina adapters) were preferentially selected using AgenCourt Ampure XP beads (Beckman 

Coulter  A63881), by first adding 70 uL beads and retaining the supernatant, then adding 25 uL beads, 

removing the supernatant, and washing and eluting sample from the beads following the 

manufacturer's protocol. Following adapter ligation and size selection, the libraries with Illumina 



adapters were amplified with 10 cycles of PCR. The size distribution of the purified libraries were 

assessed on the Agilent BioAnalyzer using the DNA 1000 kit (Agilent  5067-1505). The resulting 5C 

libraries were pooled and sequenced with 37-cycles per paired-end on the Illumina NextSeq500. 

 

iPS cell transgene integration detection by 5C primers 

This iPS clone was generated via integration of transgenic Oct4, Klf4, and c-Myc genes (Eminli et al., 

2008). Hochedlinger and colleagues demonstrated that this iPS clone exhibits transgene-independent 

self-renewal potential, which would exclude that these cells still depended on transgenic OKM 

expression. We note that our 5C approach does not exclude detection of the exogenous Oct4 and Klf4 

genes (which were likely virally integrated at sites distal to our 5C regions) with 5C primers that directly 

bind to the Oct4/Klf4 coding sequence. However, short-range, cis interactions represent the majority of 

the 5C signal, and we do not analyze trans interactions in this study. Thus, we would expect the 

transgenes to contribute relatively little to the interaction counts between these genes and other sites 

within our designed primer set. 

 

RNA-seq library preparation 

900,000 cells of each cell type were lysed with Trizol (Life Technologies 15596-026) and snap frozen. 

Total RNA was extracted and purified using the miRvana miRNA Isolation Kit (Ambion AM 1561) and 

samples were eluted into 100 uL nuclease free water. All RNA samples had an RNA Integrity Number 

>9 as assessed by Agilent BioAnalyzer. 50 uL of each RNA sample was treated with 1 uL rDNAse I 

(Ambion 1906) to remove residual genomic DNA. 350 ng DNAse-treated total RNA was prepared for 

sequencing using the Illumina TruSeq Stranded Total RNA Library Prep kit with RiboZero (Illumina RS-

122-2202) following the supplier’s protocol. cDNA libraries with Illumina adapters were amplified with 

15 cycles of PCR. Libraries were purified using AgenCourt Ampure XP beads (Beckman Coulter A63881) 



with two rounds of 1:1 bead:sample selection. The size distributions of the purified cDNA libraries were 

assessed on the Agilent BioAnalyzer using the DNA 1000 kit (Agilent 5067-1505).  Libraries were pooled 

and sequenced with 75-cyles per paired-end on the Illumina NextSeq500. 

 

RNA-seq data processing 

RNA-seq reads were aligned to the mouse genome (build mm9) using the Tophat (Tophat v2.1.0) 

alignment tool (Trapnell et al., 2009) with the parameters: -r 100 --no-coverage-search --library-type fr-

firststrand and UCSC gene annotations (Table S3). Gene level read counts were computed using the 

htseq-count tool (http://www-huber.embl.de/users/anders/HTSeq/doc/count.html) with parameters: -

m union --stranded=reverse and UCSC gene annotations. For analyses of all 10 samples (ES_Rep1, 

ES_Rep2, pNPC_Rep1, pNPC_Rep2, iPS_Rep1, iPS_Rep2, ES2i_Rep1, ES2i_Rep2, iPS2i_Rep1, 

iPS2i_Rep2), genes with more than three counts in at least five libraries were retained, resulting in a 

total of 11,767 genes analyzed. To account for library-specific differences in sequencing depth, log2-

transformed libraries were normalized by read depth of the 75%tile gene. Libraries were assessed for 

the absence of batch effects before proceeding to downstream biological analyses (Figure S4). 

 

CTCF binding detection by ChIP-qPCR 

Approximately 20 million cells were fixed in serum-free culture media supplemented with formaldehyde 

added to a final concentration of 1%. After 10 minute incubation at room temperature, fixation was 

terminated by adding 2.5M glycine stock to a final concentration of 125 mM glycine. Cross-linking 

termination was carried out for 5 minutes at room temperature followed by 15 minutes at 4°C. Cells 

were harvested with silicone scraper and pelleted, washed once with PBS, snap-frozen and stored at -

80°C until processing.  



Cell pellets were thawed for 10 min on ice before use. Nuclei were isolated by resuspending 

each pellet in 1 mL Cell Lysis Buffer (10 mM Tris pH 8.0, 10 mM NaCl, 0.2% NP-40/Igepal, Protease 

Inhibitor, PMSF), incubating on ice for 10 min, and spinning to pellet. Nuclei were resuspended in 500 uL 

Nuclear Lysis Buffer (50 mM Tris pH 8.0, 10 mM EDTA, 1% SDS, Protease Inhibitor, PMSF) and incubated 

on ice for 20 min. After bringing the samples up to volume by the addition of 300 uL IP Dilution Buffer 

(20 mM Tris pH 8.0, 2 mM EDTA, 150 mM NaCl, 1% Triston X-100, 0.01% SDS, Protease Inhibitor, PMSF), 

samples were sonicated for 45 minutes using an Epishear sonicator set at 100% amplitude, with cycles 

of 30 seconds on and 30 seconds off. The resulting sheared chromatin was spun down, and the 

supernatant was transferred to a preclearing solution of 3.7 mL IP Dilution Buffer, 0.5 mL Nuclear Lysis 

Buffer, 175 uL of Agarose Protein A/G beads, and 50 ug Rabbit IgG, and rotated at 4°C. 35 uL Protein A/G 

agarose beads were pre-bound with 10 uL anti-CTCF antibody (Millipore #07-729) and incubated for 2 

hours during the pre-clear stage. After a two hour pre-clear incubation, the beads were pelleted, and 4.5 

mL supernatant was removed. 200 uL was reserved for input control, while the remaining supernatant 

was transferred to agarose beads pre-bound with antibody and rotated overnight at 4°C. Bound bead 

complexes were washed once with 1 mL IP Wash Buffer 1 (20 mM Tris pH 8.0, 2 mM EDTA, 50 mM NaCl, 

1% Triton X-100, 0.1% SDS), twice with 1 mL High-Salt Buffer (20 mM Tris pH 8.0, 2 mM EDTA, 500 mM 

NaCl, 1% Triton X-100, 0.01% SDS), once with IP Wash Buffer 2 (10 mM Tris pH 8.0, 1 mM EDTA, 0.25 M 

LiCl, 1% NP-40/Igepal, 1% Na-deoxycholate), and finally once with 1x TE. Complexes were eluted by 

twice resuspending bound beads in 110 uL Elution Buffer (100 mM NaHCO3, 1% SDS), pelleting the 

beads after each elution and transferring 100 uL supernatant to a new tube. Finally, 12 uL of 5M NaCl 

and 20 ug RNase A were added to both 200 uL IP and input samples and incubated at 65 degrees for 1 

hour, followed by the addition of 60 ug of Proteinase K and overnight incubation at 65 degrees. DNA 

was isolated via phenol-chloroform extraction and ethanol precipitation, and concentration was 

quantified using Qubit fluorometer. 



 ChIP libraries were prepared from 3 ng of IP and input DNA using the NEBNext Ultra Library Prep 

Kit (NEB #E7370) following the manufacturers protocol for preparation of ChIP libraries. After adapter 

ligation, no size selection step was performed, and ligated samples were enriched through 18 PCR cycles 

using NEBNext Multiplex Oligos for Illumina (NEB #E7335). Libraries were eluted in 30 uL 0.1x TE, and a 

fragment size distribution between 250 and 1200 bp including sequencing adapters was confirmed using 

a High-Sensitivity assay on a Agilent Bioanalyzer.  

 Primers were designed to query specific CTCF binding sites:  

Figure 
Panel Forward Primer Reverse Primer Genomic Coordinates 

5G  
(NPC-iPS) TGTGGTCCTTTGTCCTTCCTG TGTCACGCATCCTGAATCTTC Chr3:35002112-35002461 
5G  
(ES only) AACTCACTAAGTGGCCCGAAG ACCCCAGCTCCACGAAAATG Chr3:34658834-34659306 
6H GTGTACAAGCACGCACGTATG AAAGGGAGGTGCTCAATGGTC Chr4:54936308-54936574 
S7G TAACCCTCACTGCTTGCGTAG TGTGTCCTTAGCAGACGTGTC Chr16:90635525-90635762 

 

Quantitative PCR was performed by loading 1 ng of each sample library into each 20 uL reaction, 

including 10 uL Power SYBR Green PCR Master Mix (Applied Biosystems # 4367659), and corresponding 

primers (200 nM final concentration). Reactions were loaded onto an Applied Biosystems StepOnePlus 

in three replicates and assayed using standard qPCR cycling conditions (95°C for 10 min, followed by 40 

cycles of 95°C for 15 sec and 65°C for 1 min). The CT threshold was set at 1900 so as to fall in the middle 

of the exponential phase for all primers and to capture the CT value for all samples. To facilitate 

comparison among the five cellular conditions, relative enrichment in CTCF ChIP signal was assessed by 

normalizing data by a reference control primer representing a constitutively bound CTCF site.  

 

5C data processing pipeline 

Paired-end read mapping and counting 



5C data were generated with paired-end sequencing (37 bp paired-end reads) on the Illumina NextSeq 

500 instrument. The two ends of paired-end (PE) reads were aligned independently to a pseudo-genome 

consisting of all 5C primers using Bowtie with default parameters (http://bowtie-

bio.sourceforge.net/index.shtml) (Langmead, 2010). Only reads with one unique alignment were 

considered for downstream analyses. Interactions were counted when both paired-end reads could be 

uniquely mapped to the 5C primer pseudo-genome. Only interactions between forward-reverse primer 

pairs were tallied as true counts (Table S1).  

 

Low count primer removal 

Primers with fewer than 100 total reads across all possible cis primer ligation partners were excluded 

from further analysis. Removed primers are listed below: 

#track Start Stop Primer ID 
chr3 87677389 87683794 5C_326_Nestin_FOR_117:0 
chr3 88032708 88035039 5C_326_Nestin_FOR_192:0 
chr3 88124897 88125644 5C_326_Nestin_FOR_214:0 
chr3 88283586 88286361 5C_326_Nestin_FOR_248:0 

chr16 91242594 91247280 
5C_325_Olig1-

Olig2_FOR_193:0 
chr17 35285175 35292115 5C_327_Oct4_FOR_191:0 
chr17 36018525 36020858 5C_327_Oct4_FOR_378:0 
chr17 36023358 36024542 5C_327_Oct4_FOR_380:0 
chr17 36393683 36395722 5C_327_Oct4_FOR_472:0 
chr3 34546431 34549386 5C_329_Sox2_REV_154:0 

  

Raw contact matrix visualization 

First we designated the restriction fragments to which 5C primers were designed as “queried restriction 

fragments”. Raw contact matrices were generated for each region by placing the number of counts read 

for the interaction of the ith queried restriction fragment in the region with the jth queried restriction 

fragment in the region in the ijth entry of the contact matrix. This created a square, symmetric matrix of 



contacts with dimensions equal to the number of primers in the region. Because interactions between 

fragments whose corresponding primers are oriented in the same direction cannot be detected with our 

5C primer design, not every entry of this matrix corresponds to a detectable fragment-fragment 

interaction. 

Because approximately half of the entries in this contact matrix represent undetectable 

fragment-fragment interactions, we visualized raw contact matrices at the fragment level by arranging 

the forward primers on the x-axis and the reverse primers on the y-axis, in order of primer number, 

which corresponded directly with the sorted order of genomic coordinates (heatmaps in Fig. S1A). Thus, 

the ijth cell of the resulting heatmap represents the number of counts for the interaction of the 

fragment queried by the jth forward primer with that queried by the ith reverse primer. This heatmap, 

used only for initial visualization, is therefore asymmetric and not necessarily square. 

 

Quantile normalization 

It is essential to account for technical variation among 5C replicates - in particular, batch effects for 

experiments processed or sequenced on different days - before comparing dynamic architecture 

between biological conditions. Indeed, we have found that two important factors driving experimental 

variability between biological replicates are (i) library complexity and (ii) sequencing depth differences 

between each batch of processed samples. We have found that a simple normalization factor is 

insufficient to remove bias due to sequencing depth because the differences in read counts between 

replicates tend to compound in a nonlinear manner based on the underlying complexity of the library.  

 Quantile normalization is a rank-based approach that has successfully been used to normalize 

microarray (Bolstad et al., 2003), RNAseq (Bullard et al., 2010) and Hi-C (Dixon et al., 2015) data prior to 

downstream modeling. Here we also find that quantile normalization is effective at placing different 5C 

libraries on the same distributional scale (compare distance dependence and histograms in Fig. S1A-B) 



while preserving biologically significant architectural features (compare heatmaps in Fig. S1A-B). We 

have noticed that quantile normalization is particularly effective on 5C datasets because the strongest 

signal in the raw data is the distance-dependence background, providing a smooth, ubiquitous rank-

order gradient for the comparison of contacts across replicates and conditions. Indeed, we found that 

our analysis was largely insensitive to the exact placement of the quantile normalization step relative to 

the other steps. For example, we moved the quantile normalization step to the end of our 5C analysis 

pipeline (Fig. S2A+B,E-G) and found that all views of the data show striking similarity to the 

corresponding stages of our implemented data processing pipeline (Fig. S1A-F).  

 

Primer correction 

Consistent with our findings in (Phillips-Cremins et al., 2013), we noticed the presence of primer-specific 

bias in our 5C data. For example, we observed strongly underenriched or overenriched stripes in our raw 

heatmaps – indicating that entire rows/columns can have increased or decreased counts (heatmaps in 

Fig. S1A). Consistent with this observation, the cis interactions for each primer show up to an ~8500-fold 

variation in mean interaction frequency, suggesting the presence of artifacts independent from the 

biology that influence the 5C signal (boxplots in Fig. S1A). To account for primer-specific artifacts, we 

applied our previously developed primer correction method that uses stochastic gradient descent to 

compute primer-effect normalization factors (Phillips-Cremins et al., 2013). After the primer correction 

step, we observed a marked attenuation of primer-specific artifacts (heatmaps and boxplots, Fig. S1C). 

 

Low count fragment-fragment pair removal 

Fragment-fragment pairs with primer-corrected counts below 10 in any replicate were flagged as low 

outliers with essentially unreliable values and were excluded from further analysis. 

 



Contact matrix binning 

We next generated a binned contact frequency matrix by binning each of our queried regions at regular 

4 kb intervals (approximately equal to the average cut frequency of our chosen restriction enzyme, 

HindIII). To assign a value to each element of the binned contact probability matrix, we computed an 

arithmetic mean of logged counts using a square, 20 kb smoothing window as: 

 

𝑏𝑖,𝑗 =
∑ log2�𝑛𝑘,𝑙 + 1�𝑘,𝑙∋|𝑚𝑘−𝑀𝑖|≤10 kb,�𝑚𝑙−𝑀𝑗�≤10 kb

∑ 𝟏(𝑑𝑘 ≠ 𝑑𝑙)𝑘,𝑙∋|𝑚𝑘−𝑀𝑖|≤10 kb,�𝑚𝑙−𝑀𝑗�≤10 kb
 

 

where 𝑏𝑖,𝑗 is the value assigned to the ijth entry of the binned contact matrix for the region and 

represents the contact frequency of the ith and jth bins in the region, 𝑚𝑘 represents the midpoint of the 

kth primer in the region, 𝑀𝑖 represents the midpoint of the ith bin in the region, and 𝑛𝑘,𝑙  represents the 

number of counts for the interaction of the kth queried fragment in the region with the lth queried 

fragment in the region after primer normalization. 𝟏(𝑑𝑘 ≠ 𝑑𝑙) represents an indicator function that 

checks whether the kth and lth primer in the region have the same directionality. This ensures that the 

average is computed only over the possible primer-primer interactions. 

If more than 80% of all the fragment-fragment pairs in a bin-bin pair’s smoothing window had 

values that were zero, impossible, or had been previously removed as low outliers, that bin-bin pair was 

determined to be located in a low-confidence region and was excluded from further analysis. The bin-

bin pair removal condition can be represented as: 

 

∑ 𝟏�𝑛𝑖,𝑗 > 0�𝑖,𝑗∋|𝑚𝑖−𝑀𝑘|≤10 kb,�𝑚𝑗−𝑀𝑙�≤10 kb

∑ 1𝑖,𝑗∋|𝑚𝑖−𝑀𝑘|≤10 kb,�𝑚𝑗−𝑀𝑙�≤10 kb
< 20% ⇒ 𝑏𝑘,𝑙  excluded from further analysis 

 



We selected the 20 kb smoothing window size and the 4 kb matrix resolution through a process 

of (1) iteratively testing window sizes and matrix resolutions, (2) visually inspecting the resultant 

heatmaps and (3) qualitatively comparing heatmaps to classic epigenetic marks. Our final strategy 

optimally accounted for sampling noise in 5C data while retaining what we term a pseudo-fragment (~12 

kb) resolution (discussed in detail below). We chose to assign values to the entries of the binned contact 

matrix using an average rather than a sum because HindIII has been previously shown to exhibit highly 

variable restriction site density across the genome. To attenuate the spatial noise present in our 

fragment-level data, our binning strategy effectively averages counts across a 20 kb window (compare 

heatmaps in Fig. S1C+D and Fig. S2B+E). This reduction of spatial noise is concurrent with a tightening of 

the distribution of counts across this step (compare histograms in Fig. S1C+D). 

 

Pseudo-fragment level 5C mapping resolution 

Many definitions of 3C/4C/5C/Hi-C resolution have been reported. Therefore, it is important to clarify 

our definition of resolution and our strategy for matrix binning. In a recent publication, the so-called 

“mapping resolution” of a Hi-C contact density map was defined as the smallest locus size such that 80% 

of the loci have at least 1000 contacts (Rao et al., 2014). Importantly, Rao et al. reported the numbers in 

this definition as the finest scale at which they could reliably discern and distinguish architectural 

features in a Hi-C heatmap. By contrast to the “mapping resolution” metric, Rao et al. also define an 

alternative “matrix resolution” metric which is simply the bin size selected by the investigator when 

constructing a contact density matrix. In our lowest read depth replicate, iPS+2i Rep 1, 97% of the 

queried fragments have more than 1000 contacts. Thus, if we define our loci as the individual restriction 

fragments queried by the assay, all our datasets have a mapping resolution equal to the fragment size 

(~4 kb). We find a 4 kb bin size as the finest scale at which we can discern architectural features in our 

5C contact density matrix. On the basis of a strictly “matrix resolution” definition, the resolution of our 



5C data would be 4 kb. However, because we use a square 20 kb smoothing function (discussed below), 

there are hypothetical situations in which we cannot resolve two perfectly punctate features that are 

within 20 kb of each other. Thus, our “mapping” resolution falls in the range of 4-20 kb. 

 The design and orientation of 5C primers is another critical factor unique to 5C that must be 

considered in calculating resolution. Importantly, the true alternating 5C primer design used here and in 

(Phillips-Cremins et al., 2013) only queries a subset of possible fragment-fragment interactions. 

Specifically, forward and reverse primers were tiled in a true alternating manner across our genomic 

regions. Only forward-reverse (F-R) and reverse-forward (R-F) ligation products can be detected with the 

ligation-mediated amplification approach. Thus, although we can distinguish most interactions at a ~4 

kb resolution, our more generalized resolution due to the alternating primer design is at the level of F-R-

F or R-F-R fragment sequences (~12 kb; also the midpoint between our 4-20 kb mapping resolution). 

 To our knowledge, no Hi-C map has been reported at true single-fragment resolution as even 

the highest density maps have been binned to 1-5 kb resolution with a 4 bp cutter that cuts 

approximately every 200-300 bp in the genome. Thus, the highest resolution maps to date still average 

or sum information from at least 4 (1 kb resolution) but as many as 1000’s (1 Mb resolution) of adjacent 

restriction fragments prior to modeling, parameterization of models, and downstream analyses. The 

reason for this requisite binning step is that the sampling noise in 5C/Hi-C contact matrices represents a 

significant barrier in obtaining high-confidence information for the read counts in every bin across the 

genome. However, a high-confidence understanding of the interaction frequency can be modeled at the 

expense of losing some resolution by averaging or summing counts from nearby fragment-fragment 

pairs. Here, we use 5C, which offers key advantages over Hi-C in its ability to obtain high complexity 

contact density maps with a logistically reasonable sequencing depth. Thus, we have high complexity 

libraries (i.e. most restriction fragment ligation products have been sampled at an ultra-high count 

density). For example, in iPS+2i Rep 1, our lowest-mapping replicate, 80% of our originally queried 



fragments received >5340 counts. Ultimately, to account for spatial noise, we chose a 20 kb windowing 

function to yield a search space over an approximately 5x5 grid of primer-primer pairs (F-R-F-R-F or R-F-

R-F-R). Overall, we propose that our resolution falls between 4 and 20 kb – with approximately a 12 kb 

resolution due to the true alternating primer design. 

 

Identification of bad primer gaps 

Restriction site density varies widely across the genome. Additionally, it is possible that certain primers 

fail to produce any counts due to technical error. Finally, many restriction fragments did not receive a 

primer due to low quality scores, leaving several loci unqueried by the assay. All three factors may affect 

the distance between one existing "working" primer and the next downstream "working" primer. When 

this distance is small compared to the smoothing window, the gap will be successfully spanned by 

multiple unique smoothing windows. When this distance is on a similar scale to the smoothing window, 

the smoothing window will be too small to reliably smooth across the gap. Within each region, we 

identified columns of bins that contained no positive counts from any primer ligation. When the length 

of a run of consecutive missing or zero fragments was greater than half the size of the smoothing 

window plus one bin, we classified the gap as "unsmoothable." Unsmoothable gaps are marked with 

dark gray on the heatmaps and excluded from all statistical analyses. 

 

Distance-dependence normalization 

To account for the distance-dependence background inherent in 3C-related assays, we computed an 

empirical expected distance-dependence model (Fig. S1G). Within each region and replicate, we first 

grouped the bin-bin pairs according to their interaction distance d, as measured by the number of bins 

separating the constituent bins in the bin-bin pair. We then computed the mean of the binned 

interaction frequencies within each group, as follows: 



𝜇𝑑 = mean𝑖�𝑏𝑖,𝑖+𝑑� 

where 𝜇𝑑 is the mean value at distance d (measured in number of bins of separation), and �𝑏𝑖,𝑖+𝑑�𝑖 is 

the sequence of binned contact frequencies for bin-bin pairs at distance d. Since the number of matrix 

entries included in each average will decrease with increasing distance d, these mean values are 

statistically weak predictors at long (> 600-700 kb for a 1 Mb region) distance scales. To account for any 

noise in our empirical distance-dependence estimations, we lowess-smoothed a subset of the empirical 

expected values in order to obtain a smooth approximation to the empirical expected values. Due to the 

high number of matrix entries at distances <= 300 kb, we retained the original mean values at short 

distance scales (<= 300 kb for a 1 Mb region). 

We next used our empirical expected model to normalize the binned contact matrices by 

computing a fold-enrichment of counts relative to the expected (Figs. S1E, S2G). Since the values in our 

binned contact matrices were already log-transformed, we directly computed a log-scale fold-

enrichment as: 

𝑓𝑖,𝑗 = 𝑏𝑖,𝑗 − 𝜇|𝑖−𝑗| 

where 𝑓𝑖,𝑗, the ijth entry of the distance-normalized contact matrix, represents the log-scale fold-

enrichment of interactions between the ith and jth bins in the region, 𝑏𝑖,𝑗 is the ijth element of the 

binned interaction matrix, and 𝜇|𝑖−𝑗| represents the distance-dependence normalization factor 

appropriate for a bin-bin pair at distance 𝑑 = |𝑖 − 𝑗| within the region under consideration (described 

above). Distance dependence-normalized counts show no discernable relationship with interaction 

distance compared to data at earlier stages of the analysis (histograms in Figs. S1E, S2G). 

Noteworthy, the Klf4 region spans two distinct sub-TADs with markedly different interaction 

frequencies. We divided Klf4 into two separate sub-regions and created independent expected models 

for sub-region_1 (single block: chr4:54,899,978-55,371,978 x chr4:54,899,978-55,371,978) and sub-

region_2 (the union of three blocks: chr4:54,899,978-55,371,978 x chr4:55,371,978-



55,887,978, chr4:55,371,978-55,887,978 x chr4:55,371,978-55,887,978 and chr4:55,371,978-55,887,978 

x chr4:54,899,978-55,371,978). Spearman’s rank-order correlation coefficients for distance-corrected 

interaction frequencies of ES, NPC, and iPS replicates can be found in Table S2. 

 

Probabilistic model fitting and distance-corrected interaction scores 

We modeled our distance-corrected interaction frequency values as a continuous random variable using 

a logistic distribution parameterized independently for each region and replicate (Fig. S3A). We fit the 

logistic distribution by computing region-specific and replicate-specific location (l) and scale (s) 

parameters with maximum likelihood estimation through the R fitdistr() function. We computed right-

tail p-values for every entry of distance-normalized contact matrices via the R plogis() algorithm, the 

lower.tail=FALSE argument and the below logistic cumulative distribution function: 

 

𝑝𝑖,𝑗 = 1 −
1

1 + 𝑒−�𝑓𝑖,𝑗−𝑙�/𝑠
 

 

where 𝑝𝑖,𝑗  represents the right-tailed p-value for the relative interaction frequency found in the ijth 

entry of the distance-normalized contact matrix. 

Prior to downstream thresholding/classification of significant 3-D interactions, p-values were 

transformed into distance-corrected interaction scores with: 

IS𝑖,𝑗 = −10 × log2�𝑝𝑖,𝑗� 

Our computed distance-corrected interaction score offers a specific metric for identification/detection 

of significant 3-D interactions that are visually evident but difficult to disentangle from the underlying 

noise in the raw data (illustrated in heatmaps Fig. S1F). The highest (red/black) bins in ES and NPC 

heatmaps show strong cell type-specific correlation with known cell type-specific chromatin marks 

(heatmaps in Fig. S1F) while exhibiting strong attenuation of primer effects, absence of distance-



dependence background signal and minimal distribution skewing due to technical differences in library 

complexity (boxplots and histograms in Fig. S1F).  

 

GC content bias investigation 

We assessed the degree of GC content bias in our original data and the degree to which our primer 

correction step attenuated the bias. First, we grouped restriction fragments into strata according to the 

GC content of the genome-binding portion of each 5C primer (i.e. the full 5C primer sequence minus the 

universal T7/T3 tail). We computed the sums of cis interactions for all primers in each strata and plotted 

each data point as an enrichment over the average cis interaction sum across all primers (Fig. S1H). A 

comparison of G-C content bias for each of the first three stages of our analysis pipeline demonstrated 

that primers with extreme GC content are relatively depleted for counts in our raw data and that this 

bias is attenuated after primer correction (Fig. S1H). The attenuation in primer bias in extreme GC 

content strata is consistent with the goal of our primer correction scheme to push all primers towards 

equal visibility. 

To further investigate the GC bias relationships in our data, we stratified our primer-primer pairs 

into a 2-D grid of strata depending on the GC content of the upstream and downstream primer 

comprising the forward-reverse primer pair. We then visualized the enrichment of counts within each 

stratum, computed as described by Ren and colleagues (Jin et al., 2013) as: 

 

𝐸𝑎,𝑏 =
∑ 𝑐𝑖,𝑗𝑖,𝑗∋𝑙𝑎<𝑔𝑖≤𝑢𝑎,𝑙𝑏<𝑔𝑗≤𝑢𝑏,𝑖>𝑗

∑ 𝜇𝑖,𝑗∋𝑙𝑎<𝑔𝑖≤𝑢𝑎,𝑙𝑏<𝑔𝑗≤𝑢𝑏,𝑖>𝑗
 

 

where 𝐸𝑎,𝑏 is the enrichment value for the abth stratum in the grid, 𝑙𝑎 and 𝑢𝑎 are the lower and upper 

GC content limits, respectively, of the ath stratum, 𝑙𝑏 and 𝑢𝑏 are the lower and upper GC content limits, 



respectively, of the bth stratum, 𝑔𝑖  is the GC content of the ith primer, 𝑐𝑖,𝑗 is the number of counts for 

the interaction of the ith primer with the jth primer, and 𝜇 is the mean number of counts across all 

primer-primer pairs.  

We generated GC strata heatmaps for raw and primer corrected data (Fig. S1I). Although the 

strata with the most extreme GC contents show less bias after normalization, there was still a noticeable 

enrichment of counts centered on the 50-60% to 50-60% pairwise GC content range. This result is 

consistent with previous observations by Ren and colleagues suggesting that there might be a 

biologically significant enrichment for 3-D interactions between genomic elements with high GC content 

levels at distance scales < 2 Mb (Jin et al., 2013). 

 

Comparison of 5C analysis pipeline to alternative approaches 

We compared the results from our current 5C data analysis steps to the results of the corresponding 

steps in our previously published 5C analysis pipeline (Fig. S2A-D). In our previous approach, data were 

not quantile normalized, the distance-dependence background was modeled parametrically with a 

Weibull distribution, no binning was performed and p-values were computed via modeling single 

fragment resolution data with a compound normal-lognormal distribution (Phillips-Cremins et al., 2013).  

 First, we corrected for primer effects by employing the same primer normalization strategy in 

our current and original analysis pipelines. The primer correction step attenuated under/over-enriched 

stripes in the heatmaps, pushing all rows/columns toward equal visibility, independent of whether or 

not the data were quantile normalized (compare boxplots and heatmaps in Figs. S1C and S2B). Second, 

our 2016 empirical, region-specific distance-dependence models show improved ability to correct for 

the short-range distance-dependence relationship than our previous 2013 parametric distance-

dependence model (compare heatmaps and distance-dependence curves in Figs. S1E and S2C). Third, 

our 2016 binning approach at ~12 kb ‘pseudo-fragment resolution’ (discussed above) offers key 



improvements in highlighting the true looping signal vs. noise when compared to our 2013 ~4 kb ‘single 

fragment resolution’ maps (compare heatmaps in Figs. S1D-F and S2C-D). Finally, our 2016 approach to 

model distance-corrected interaction frequencies as a continuous random variable with the logistic 

distribution results in the clear illumination of underlying looping patterns in distance-corrected 

interaction score heatmaps. Our previous approach modeling single fragment resolution data with a 

compound normal-lognormal distribution did allow for the identification of a few of the strongest 

structural features that change dynamically between cell types. However, distance-corrected interaction 

score maps from the 2013 pipeline exhibited a much greater degree of spatial noise that obscured many 

important 3-D interactions (compare heatmaps in Figs. S1F and S2D). Finally, we moved the order of our 

current pipeline steps  - conducting quantile normalization after binning, performing the binning step on 

unlogged data and logging only for visualization – and the resultant heatmaps showed similar results to 

our current pipeline steps, suggesting that the biological conclusions are robust to the order at which we 

conduct our pre-processing steps (Figs. S2E-G).  

Overall, our 5C methods were chosen because they yield highly sensitive and quantitative 

identification/detection of significant 3-D interactions while exhibiting strong attenuation of primer 

effects, absence of distance-dependence background signal and minimal distribution skewing due to 

technical differences in library complexity (Fig. S1F). 

 

Principal component analysis  

Principal component analysis was performed to scatter the six experimental replicates according to their 

distance-corrected interaction frequencies at each bin-bin pair. The R prcomp() function with active 

center and scale parameters was used to compute the principal components for our six conditions. We 

plotted the projection of our six conditions onto the first two principle components as a scatterplot. 

 



Classification of cell type-specific 3-D interactions 

To classify cell type-specific 3-D interactions, we generated scatterplots of distance-corrected 

interaction scores for pairwise combinations of ES cells, NPCs and iPS cells (Fig. 3A-F). Specifically, for 

every 4 kb bin, the minimum distance-corrected interaction score between the two replicates for each 

cell type was plotted to ensure both replicates must fall above any threshold to be considered for 

classification. Distance-corrected interaction scores ≤ 3.219 in ES cells, NPCs and iPS cells were classified 

as “background” interactions. Interactions for which all cell types had a distance-corrected interaction 

score ≤ 30 were not considered in the parsing of any 3-D interaction class.  

For each pairwise comparison, distance-corrected interaction scores were classified as: (i) 

‘present in both cell types’, (ii) ‘present in cell type 1’, (iii) ‘present in cell type 2’, (iv) ‘unable to be 

differentially assigned with confidence’, or (v) a ‘background’ interaction (i.e. low interaction score) in 

both cell types (Fig. 3). Pairwise interaction classifications were then combined to determine differential 

interactions among all three cell types.  

Reproducible distance-corrected interaction scores ≥ 53.219* in cell type 1 and cell type 2 were 

considered ‘present in both cell types’. Similarly, if the difference between the minimum interaction 

scores of both cell types did not exceed 14, the interaction was also classified as ‘present in both cell 

types’. Interactions with differences between the distance-corrected interaction scores of the two cell 

types greater than 14 that also had interaction scores ≥ 43.219 but < 53.219 in all cell types were 

removed from consideration because of uncertainty whether to classify them as constitutive or cell-type 

specific. The remaining interactions (i.e. at least one cell type interaction score > 30, at least one cell 

type interaction score < 43.219, and the difference between the minimum replicates of the cell types > 

14) were classified as ‘present in cell type 1’ if the interaction score in ‘cell type 1’ was greater and 

‘present in cell type 2’ if the interaction score in ‘cell type 2’ was greater. 



Pairwise classifications were combined to construct the 3-D interaction categories between the 

three cell types. Interactions that were considered ‘present in both cell types’ in all pairwise 

comparisons were parsed into the “constitutive” (grey class) 3-D interaction category. Interactions that 

were classified as ‘present in both ES and iPS cells’ but were found to be ES- and iPS-specific when 

comparing these cell types to NPCs were parsed into the “ES-iPS” (purple class) 3-D interaction category. 

Interactions that were classified as ‘present in ES cells’ when thresholded against both iPS and NPC 

distance-corrected interaction scores were parsed into the “ES-only” (red class) 3-D interaction 

category. Similarly, interactions classified as ‘present in both iPS cells and NPCs’ but were found to be 

iPS- and NPC-specific in comparison with ES cells were parsed into the “NPC-iPS” (blue class) 3-D 

interaction category. ‘Present in both ES cells and NPCs’ interactions were parsed into the “ES-NPC” 

(yellow class) 3-D interaction category if the interactions were not present when compared to iPS cells. 

Finally, interactions classified as ‘present in iPS cells’ when thresholded against both ES cells and NPCs 

were parsed into the “iPS-only” (orange class) 3-D interaction category, and interactions classified as 

‘present in NPCs’ when thresholded against both ES and iPS cells were parsed into the “NPC-only” 

(green class) 3-D interaction category. We subsequently removed any interaction that was classified but 

spanned less than 20 kb between the bins involved in the interaction. Additionally, we removed 

interactions that spanned greater than 400 kb if they did not form an adjacency cluster (See “Interaction 

Adjacency Clustering” below) of at least 5 pixels. The bin numbers of the interactions whose interaction 

scores are presented in barplots in Figs. 4, S5, 5, 6, S7 can be found in Table S7. 

*Note on thresholds: 53.219 = −10 ∗ log2(0.025) ; 43.219 = −10 ∗ log2(0.05) ; 30 = −10 ∗

log2(0.125) ;  3.219 = −10 ∗ log2(0.8), thus interaction scores of 53.219, 43.219, 30, and 3.219 

correspond to interaction p-values of 0.025, 0.05, 0.125, and 0.8, respectively. 

 

Empirical false discovery rate calculation 



Justification of strategy 

To compute an empirical false discovery rate (eFDR) for our interaction score thresholds, we employed a 

strategy in which we simulated 5C experiments consisting of three identical cellular conditions with two 

replicates each. The motivation/rationale for this strategy was that we wanted to determine how many 

3-D interactions would be called by our thresholding/classification scheme (Figs. 3, S3) when comparing 

three cellular states (n=2 biological replicates each) that have been simulated to contain equivalent 3-D 

architecture. For example, we simulated ES1_Rep1, ES1_Rep2, ES2_Rep1, ES2_Rep2, ES3_Rep1, and 

ES3_Rep2, where all six replicates were generated from the same model (modeled based on our 

experimental ES data, discussed below). After the creation of the simulated replicates, ES1, ES2, and ES3 

were treated as the distinct conditions for categorization purposes. By quantifying the number of 

interactions that we would expect by chance to pass our thresholds (discussed above), we can compute 

an eFDR for each 3-D interaction class identified when comparing ES vs. NPC vs. iPS cells.  

 

Model generation – mean parameter estimation 

First, we generated simulations of 5C data. To generate each of the simulations, we created three 

independent models, each of which was based on one of three cell type subsets (ES, NPC, iPS) of our 

experimental data. For each of these three models, we first computed a mean parameter by calculating 

the mean distance-corrected interaction frequency for that bin-bin pair among the two experimental 

replicates for the cell type the model was based on. We represent this mathematically as: 

𝜇𝑐,𝑠,𝑖,𝑗 =
∑ 𝑓𝑐,𝑟,𝑠,𝑖,𝑗
2
𝑟=1

2
 

where 𝜇𝑐,𝑠,𝑖,𝑗  is the mean distance-corrected interaction frequency for the ijth bin-bin pair of the sth 

region in the model for cell type 𝑐 and 𝑓𝑐,𝑟,𝑠,𝑖,𝑗  is the distance-corrected interaction frequency for the ijth 

bin-bin pair of the sth region in the experimental data for replicate 𝑟 in cell type 𝑐. 

 



Model generation – estimating the mean-variance relationship 

Second, to obtain reasonable estimates for variance, we estimated a region-specific mean-variance 

relationship by performing a linear regression on the scatterplot of mean versus sample standard 

deviation of the distance-corrected interaction frequency for each bin-bin pair in each region among the 

two experimental replicates for the cell type being considered. This linear regression allowed us to 

compute a predicted standard deviation given a mean as: 

𝜎�𝑐,𝑠,𝑖,𝑗 = 𝑚𝑐,𝑠𝜇𝑐,𝑠,𝑖,𝑗 + 𝑏𝑐,𝑠 

where 𝜎�𝑐,𝑠,𝑖,𝑗  is the predicted standard deviation of distance-corrected interaction frequency for the ijth 

bin-bin pair of the sth region in the model for cell type 𝑐, 𝜇𝑐,𝑠,𝑖,𝑗  is the mean distance-corrected 

interaction frequency for the ijth bin-bin pair of the sth region in the model for cell type 𝑐, and 𝑚𝑐,𝑠 and 

𝑏𝑐,𝑠 are the slope and y-intercept parameters obtained from the linear regression of mean versus 

standard deviation for the sth region in the experimental data from cell type 𝑐. 

 

Model generation – variance parameter estimation 

Third, we used the mean-variance relationship to estimate the standard deviation parameter. We set 

the simulation standard deviation at each bin-bin pair to a linear combination of the observed standard 

deviation for that bin-bin pair in the experimental data for that cell type and our predicted standard 

deviation at that bin-bin pair as follows: 

𝜎𝑐,𝑠,𝑖,𝑗 = 𝛼𝜎�𝑐,𝑠,𝑖,𝑗 + 𝛽�
1
2
� �𝑓𝑐,𝑟,𝑠,𝑖,𝑗 − 𝜇𝑐,𝑠,𝑖,𝑗�

22

𝑟=1
 

where 𝜎𝑐,𝑠,𝑖,𝑗  is the final standard deviation parameter for ijth bin-bin pair of the sth region in the model 

for cell type 𝑐, �1
2
∑ �𝑓𝑐,𝑟,𝑠,𝑖,𝑗 − 𝜇𝑐,𝑠,𝑖,𝑗�

22
𝑟=1  is the sample standard deviation of the distance-corrected 

interaction frequencies of the ijth bin-bin pair of the sth region in the experimental data from cell type 𝑐 



(r indexes the replicates), and 𝛼 and 𝛽 are constants chosen to ensure that the noise in the data 

generated by the model closely approximates the noise in the actual experimental data. 

 

Simulations 

Fourth, after computing the model parameters 𝜇𝑐,𝑠,𝑖,𝑗 and 𝜎𝑐,𝑠,𝑖,𝑗, we generated simulated 5C 

experiments by drawing simulated distance-corrected interaction frequencies from a normal 

distribution with mean, variance parameters as follows: 

𝐹𝑐,𝑠,𝑖,𝑗 ~ 𝑁�𝜇𝑐,𝑠,𝑖,𝑗,𝜎𝑐,𝑠,𝑖,𝑗� 

where 𝐹𝑐,𝑠,𝑖,𝑗 is a random variable representing the simulated distance-corrected interaction frequency 

for the ijth bin-bin pair of the sth region for a simulation of cell type 𝑐 and 𝜇𝑐,𝑠,𝑖,𝑗 and 𝜎𝑐,𝑠,𝑖,𝑗  are the 

mean distance-corrected interaction frequency and the final standard deviation parameter, respectively, 

for the ijth bin-bin pair of the sth region in the model for cell type 𝑐. We chose a normal distribution in 

accordance with our assumption that the replicate-to-replicate noise for repeated measurement of the 

same exact bin-bin interaction would be normally distributed. 

 

Monte Carlo, p-value calculation, classification 

Fifth, we used the above approach to generate six simulated 5C experiments from the same model, and 

then applied our logistic fits and our thresholding/classification scheme (described above) to each of the 

simulations. As in our real 5C data, we modeled the distribution of simulated distance-corrected 

interaction frequencies with a logistic distribution parameterized independently for each region. Logistic 

fits were used to assign p-values to every bin-bin pair in the simulation. P-values were converted to 

interaction scores as described above. The six independently constructed simulations were grouped into 

three equivalent categories containing two replicates each and subjected to the same 

thresholding/classification scheme as our experimental data. The number of simulated bin-bin pairs that 



were categorized into each of our 3-D interaction classes was recorded. This process was repeated 1000 

times for each of our three cell types, and the numbers of simulated bin-bin pairs falling into each 

category were averaged across the 1000 trials and across the three cell types. We confirmed that our 

simulations fairly recapitulated the noise seen in the experimental data by comparing Spearman's and 

Pearson's correlation coefficients as well as histograms and empirical cumulative distribution functions 

for our simulations to those we observed in our experimental data. 

 

Computing the false discovery rates for each 3-D interaction class  

Finally, we computed false discovery rates. Because the six simulated experiments represent simulated 

biological replicates, any bin-bin pair that was categorized into any category other than constitutive or 

background represents a false positive. Therefore, we estimated the false positive rate (FPR) for our 

thresholds for each of the other categories as the number of simulated bin-bin pairs falling into that 

category divided by the total number of bin-bin pairs in the simulation. Mathematically, this is 

represented as: 

FPR𝑡
sim =

𝑛�𝑡sim

𝑁
 

where FPR𝑡
sim is the simulation false positive rate for category t, 𝑛�𝑡sim is the average number of bin-bin 

pairs categorized into category t across all simulations, and 𝑁 is the total number of bin-bin pairs in each 

simulation. We then assumed that the FPR for our simulation was a good estimate for the FPR in the 

categorization of our real experimental data. 

FPR𝑡
sim ≈ FPR𝑡

exp 

where FPR𝑡
sim is the simulation false positive rate for category t and FPR𝑡

exp is the experimental false 

positive rate for category t. Our real experimental data and our simulations had the same number of 

bins and therefore the same number of bin-bin pairs to be categorized. Therefore, we estimated that for 



each category other than background and constitutive, the number of false positives observed in our 

simulations was equal to the number of false positives in our experimental data. 

FPR𝑡
sim ≈ FPR𝑡

exp ⇒ 𝑛�𝑡sim ≈ FP𝑡
exp 

where 𝑛�𝑡sim is the average number of bin-bin pairs categorized into category t across all simulations and 

FP𝑡
exp is the experimental number of false positives in category t. 

We then estimated the false discovery rate (FDR) in our experimental data by dividing this 

estimated number of false positives by the total number of bin-bin pairs declared significant in the 

experimental data. Mathematically, this is represented as: 

FDR𝑡
exp =

FP𝑡
exp

𝑛𝑡
exp ≈

𝑛�𝑡sim

𝑛𝑡
exp 

where 𝑛𝑡
exp is the number of bin-bin pairs categorized into category t in the experimental data. Because 

a different number of bin-bin pairs were declared significant in different categories, we computed 

different FDRs for different categories (Fig. 3H-I). 

 

6 sample vs 10 sample 5C data processing 

5C data was processed either in a 6 sample batch, which includes only ES, NPC, and iPS replicates, or a 

10 sample batch, which includes all 2i replicates in addition to the core 6 samples. Cell-type specific 3D 

interactions were classified using the ‘6-sample’ group of ES, NPC, and iPS replicates. In instances where 

heatmaps are displayed for only these three cell types (i.e. Fig. 4, S5B, S6), we use ‘6-sample’ normalized 

data, whereas when data is displayed for all 5 cell types (i.e. Fig. 5, S5F, 6, S7), we present ’10-sample’ 

normalized data. 

 

Interaction adjacency clustering 



Spatially adjacent interactions of the same classification were iteratively grouped into clusters in order 

to quantify the number of interaction clusters present in our data. For a given classified pixel, we 

queried if that pixel was adjacent to an already identified cluster – if adjacent, the pixel was appended 

to that cluster - if not adjacent, the pixel was assigned its own cluster. Clusters of the same classification 

that were directly adjacent to themselves at the end of the iterative process were merged. 

 

ChIP-seq peakcalling 

A summary of all ChIP-seq data sets re-analyzed in this study is provided in Table S4. Data was 

downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/). Sequences were aligned to NCBI Build 37 

(UCSC mm9) using default parameters (-v1 -m1) in Bowtie. Only sequences that mapped uniquely to the 

genome were used for further analysis. Model-based Analysis for ChIP Sequencing (MACS) was used for 

peak calling (http://liulab.dfci.harvard.edu/MACS/00README.html). For CTCF ChIP-seq, default 

parameters were used with a p-value cutoff of p < 1 x 10-8. For histone modification ChIP-seq (e.g. 

H3K4me1, H3K27ac, H3K4me3), we skipped the model-building step by calling the parameter --no 

model with at p-value cutoff of either p < 1 x 10-8, p < 1 x 10-6 or p < 1 x 10-4 . 

 

Parsing ES-specific and NPC-specific genes 

Normalized RNA-seq counts were parsed by fold change between ES cells and NPCs into ES-specific and 

NPC-specific gene expression categories. Genes that were at least two-fold upregulated in ES cells 

compared to NPCs were classified as ES-specific, whereas genes that were at least two-fold upregulated 

in NPCs compared to ES cells were classified as NPC-specific. ES-specific genes were further refined by 

required overlap with high-confidence H3K27ac signal (peaks called at p < 1 x 10-6) in ES cells (found in 

Table S5). NPC-specific genes were further refined by required overlap with high-confidence H3K27ac 

signal (peaks called at p < 1 x 10-4) in NPCs (found in Table S6). Inactive genes were parsed by identifying 

http://www.ncbi.nlm.nih.gov/geo/


those genes falling within queried 5C regions that did not exhibit H3K27ac signal (peaks called at p < 1 x 

10-2) in either ES cells or NPCs. 

  

Parsing ES-specific and NPC-specific enhancers 

H3K27ac peaks (ES, p < 1 x 10-6; NPC, p < 1 x 10-4) were merged if they fell within 500 bp end-to-end 

distance of each other. NPC H3K27ac was peak-called at a lower threshold than the ES H3K27ac after 

visual observation that there appeared to be a smaller dynamic range of the NPC H3K27ac ChIPseq data 

between the active and inactive state. ES-specific enhancers were defined by overlap between merged 

H3K27ac peaks and H3K4me1 peaks (p < 1 x 10-4) in ES cells and the absence H3K27ac in NPCs (defined 

by subtraction of low-confidence NPC-binding sites for H3K27ac (p < 1 x 10-2)). NPC-specific enhancers 

were defined by overlap between merged H3K27ac peaks and H3K4me1 peaks (p < 1 x 10-4) in NPCs and 

the absence H3K27ac in ES cells (defined by subtraction of low-confidence ES-binding sites for H3K27ac 

(p < 1 x 10-2)). To ensure subtraction of all potential genes, it was required that parsed ES-specific and 

NPC-specific enhancers did not fall within 2 kb of a transcription start site. A summary of all ChIP-seq 

datasets utilized can be found in Table S4. 

  

Parsing ES-specific and NPC-specific CTCF sites 

ES-specific CTCF was defined by the presence of high-confidence binding sites (p < 1 x 10-8) in ES cells 

and the absence of CTCF in NPCs (defined by subtraction of low-confidence NPC-binding sites for CTCF 

(p < 1 x 10-2). NPC-specific CTCF was defined by the presence of high-confidence binding sites (p < 1 x 10-

8) in NPCs and the absence of CTCF in ES cells (defined by subtraction of low-confidence ES-binding sites 

for CTCF (p < 1 x 10-2)). Constitutive CTCF was defined by the presence of high-confidence binding sites 

(p < 1 x 10-8) in both cell types. A summary of all ChIP-seq datasets utilized can be found in Table S4. 

 



Computing enrichments 

Annotation intersections 

For each bin in each of our 5C regions, we identified the genomic elements that overlapped that bin, or 

the neighboring 2 bins on either side (matching our 20 kb window, see Contact matrix binning above); 

the bin was then considered to ‘contain’ those genomic elements. Next, to interrogate pairwise 

connections between distinct genomic elements, we found all the bin-bin pairs whose upstream bin 

contained the first type of genomic element and whose downstream bin contained the second type of 

genomic element, or the reverse. For each of these bin-bin pairs, we checked which interaction 

classification category, if any, they fell into. We recorded the total number of intersections of this 

interaction class for every pair of types of genomic elements being considered and for every category in 

our interaction categorization scheme. By considering pairs of genomic elements in this way, we 

attempted to identify instances of one type of genomic element interacting with another type of 

genomic element.  In our analysis, we included pairs of the same type of genomic elements (e.g., ES-

specific genes interacting to ES-specific genes). We also created an artificial type of genomic element 

(referred to as “wildcard” element) that was present in every bin of every 5C region. Including this 

“wildcard” genomic element allowed us to query interactions that involved one specified type of 

genomic element interacting with any other location, irrespective of what genomic elements were 

present on the other side (see Fig. 6D). 

 

Computing percentage incidence, fold-enrichment above background, and p-values 

Next, we divided the interaction counts for each pair of genomic element classes in each interaction 

category by the total number of interactions in that category to obtain the percentage of interactions in 

that category that involved an interaction between the two types of genomic elements in the pair. We 

then computed a fold-enrichment for each interaction type’s percentage above the background 



interaction type’s percentage. Finally, we computed p-values for the enrichment by applying Fisher’s 

exact test to the contingency table below: 

  

Number of interactions in 
the selected category 
involving the two selected 
annotations 

Number of interactions in the 
background category 
involving the two selected 
annotations 

Number of interactions in either 
the selected or the background 
category involving the two 
selected annotations 

Number of interactions in 
the selected category not 
involving the two selected 
annotations 

Number of interactions in the 
background category not 
involving the two selected 
annotations 

Number of interactions in the 
selected or the background 
category not involving the two 
selected annotations 

Total number of interactions 
in the selected category 

Total number of interactions 
in the background category 

  

  

We used the p-value for the particular tail of the distribution that matched the direction of the 

enrichment (i.e., the right-tail p-value if the interaction was enriched over background, and the left-tail 

p-value if the interaction was depleted below background, generally equivalent to the lesser of the two 

p-values). P-values were computed using the scipy.stats.fisher_exact function from the scipy Python 

computational library. 

  

Visualizing enrichments 

These enrichment quantification strategies were employed to investigate the intra-regional interactions 

of a selected annotation on either side of the interaction (via our “wildcard” annotation), and 

interactions between one selected annotation and another selected annotation falling within each 

interaction classification. Enrichments were visualized as either bar plots (showing the percentages of 

interactions between a pair of annotations falling into each of the interaction categories with the height 

of the different bars) or heat maps (with the color representing the log base 2 fold-enrichment of a 



certain interaction category above background for the percentage of interactions between a pair of 

annotations and the text showing the upper bound for the p-value for that enrichment).  

  

Computing connectivity 

To compute the ‘connectivity’ metric for each genomic annotation (Fig. 7), we first summed the number 

of significant interactions present in a given cell type that contained that annotation on at least one side 

of the interaction. A ‘connectivity’ value was computed by dividing the total number of interactions 

made by each annotation by the total number of interactions called significant in that cell type. For 

example, for the “ES enhancers in ES cells" data point, we counted the number significant interactions 

that intersected an ES enhancer and were categorized as either ES only, ES-iPS, ES-NPC, or constitutive 

(the four interaction classes present in ES cells); this sum was then divided by the total number of 

interactions categorized as ES only, ES-iPS, ES-NPC, or constitutive. 
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